

Sistema de Controle da FIRST Robotics Competition

Seja bem-vindo a documentação do sistema de controle da FRC! Aqui você irá encontrar um guia passo-a-passo para a correta configuração e programação dos componentes eletrônicos mais importantes utilizados na competição.

Atenção! Este guia foi adaptado para português da Documentação oficial da FIRST [https://docs.wpilib.org/en/stable/] e da Cross the Road Eletronics [https://phoenix-documentation.readthedocs.io/en/latest/].

Fundamentos de Programação e Elétrica

	Primeiros passos
	Introdução

	Visão Geral dos Softwares de programação para FRC

	Visão geral do Hardware do Sistema de Controle de FRC®

	Offline Installation Preparation

	Instalando LabVIEW para FRC (LabVIEW apenas)

	Installing the FRC Game Tools

	Como fazer o cabeamento de um robo para FRC

	Formatando seu roboRIO

	Programming your Radio

	Getting Started with a Benchtop Robot
	Creating your Benchtop Test Program (LabVIEW)

	Running your Benchtop Test Program

Fundamentos da Biblioteca WPIlib

	FRC LabVIEW Programming

	Atuadores

	Sensores

	CAN Devices

	Basic Programming

	Suporte

Documentação da CTRE

	Phoenix Software Reference Manual

	Primer: CTRE CAN Devices

	Primer: What is Phoenix Software

	Prepare your workstation computer

	FRC: Prepare NI roboRIO

	Initial Hardware Testing

	Bring Up: CAN Bus

	Bring Up: PCM

	Bring Up: PDP

	Bring Up: Talon FX/SRX and Victor SPX

	Troubleshooting and Frequently Asked Questions

Ferramentas de Software da WPIlib

	Driverstation
	Imaging your Classmate (Veteran Image Download)

	FRC Driver Station Powered by NI LabVIEW

	Programming Radios for FMS Offseason

	Troubleshooting Dashboard Connectivity

	Driver Station Best Practices

	Driver Station Log File Viewer

Configuração da Rede do robô

	Networking Introduction
	Networking Basics

	IP Configurations

	roboRIO Network Troubleshooting

	Windows Firewall Configuration

	Measuring Bandwidth Usage

	OM5P-AC Radio Modification

Entre em contato conosco: robotica.1156@gmail.com

Primeiros passos

	Introdução

	Visão Geral dos Softwares de programação para FRC

	Visão geral do Hardware do Sistema de Controle de FRC®

	Offline Installation Preparation

	Instalando LabVIEW para FRC (LabVIEW apenas)

	Installing the FRC Game Tools

	Como fazer o cabeamento de um robo para FRC

	Formatando seu roboRIO

	Programming your Radio

Introdução

Bem-vindo à documentação para os pacotes de software do Sistema de Controle e WPILib da FIRST® Robotics Competition. Esta página é a principal fonte de documentação quanto ao uso do Sistema de Controle da FRC® (incluindo fiação, configuração e software), assim como as bibliotecas e ferramentas da WPILib. Lembrando que esta é a versão traduzida pela equipe Under Control, para acessar a versão oficial em inglês, clique aqui [https://docs.wpilib.org/en/stable/].

Novo na Programação?

Estas páginas cobrem os detalhes das bibliotecas WPILib e do Sistema de Controle da FRC e não descrevem o básico do uso das linguagens de programação suportadas. Se procura obter recursos para aprender as linguagens de programação suportadas, consulte as recomendações abaixo:

Note

Você pode continuar com esta seção de Introdução para obter um robô básico funcional sem o conhecimento da linguagem de programação. Para prosseguir, você precisará estar familiarizado com a linguagem de programação escolhida.

C++

	LearnCPP [https://www.learncpp.com/]

	Programming: Principles and Practice Using C++ 2nd Edition [https://www.amazon.com/dp/B00KPTEH8C] is an introduction to C++ by the creator of the language himself (ISBN-10: 0321992784).

	C++ Primer Plus 6th Edition [https://www.amazon.com/dp/0321776402/] (ISBN-10: 0321776402).

Java

	Code Academy [https://www.codecademy.com/learn/learn-java]

	Head First Java 2nd Edition [https://www.amazon.com/dp/B009KCUX3S] is a a very beginner friendly introduction to programming in Java (ISBN-10: 0596009208).

LabVIEW

	National Instruments Learn LabVIEW [http://www.ni.com/academic/students/learn-labview/]

Do zero á um robô

As páginas restantes nesta seção de Introdução foram projetadas para serem concluídas para ir de nada a um robô básico funcional. Os documentos guiarão você na instalação do software necessário, na fiação e configuração do hardware, e no carregamento de um exemplo básico que deve permitir a operação de seu robô. Quando você completar uma página, clique em Next para navegar para a próxima página e continuar com o processo. Quando estiver pronto, clique em Next para continuar para uma visão geral da WPILib em C++/Java ou clique no logo no canto superior esquerdo para voltar para página principal e explorar o conteúdo restante.

Visão Geral dos Softwares de programação para FRC

O sistema de controle FRC consiste em uma ampla variedade de componentes de software obrigatórios e opcionais. Estes elementos foram projetados para ajudá-lo no design, desenvolvimento, e depuração do código do robô, bem como, ajudar no controle operacional do robô e fornecer um feedback ao solucionar problemas. Para cada componente do software, este documento fornecerá uma breve visão geral de sua finalidade, um link para o download do pacote, se apropriado, e um link para a documentação adicional, quando disponível.

Compatibilidade com o Sistema Operacional

O sistema operacional principal com suporte para componentes FRC é o Windows. Todos os componentes de software FRC necessários foram testados no Windows 7, 8 e 10. O Windows XP não é suportado.

Dito isso, muitas das ferramentas para programação C ++ / Java também são suportadas e testadas no macOS e Linux. As equipes que oprarem por programar em C ++ / Java poderão desenvolver usando esses sistemas, usando um sistema Windows para operações como a Driver Station, a configuração do rádio e a formatação do roboRIO.

LabVIEW para FRC (Somente Windows)

[image: ../../../_images/labview-frc.png]
LabVIEW para FRC, baseado no LabVIEW 2019 da National Instruments, é o ambiente de desenvolvimento do LabVIEW, uma das três linguagens oficialmente suportadas para a programação de um robô de FRC. O LabVIEW é uma linguagem gráfica orientada a fluxo de dados. Os programas no LabVIEW consistem em uma coleção de ícones, chamados VIs, conectados com fios que passam dados entre os VIs. O instalador do LabVIEW FRC é distribuído em um DVD encontrado no Kit de peças e também está disponível para download (consulte a página de instruções de instalação vinculada abaixo).

Instruções para instalar as bibliotecas para FRC (o pacote também inclui Driver Station e Utilitários) podem ser encontradas aqui. Um guia para começar a usar o software LabVIEW FRC, incluindo instruções de instalação, pode ser encontrado aqui.

Simulador de robô FRC (Somente Windows)

[image: ../../../_images/robot-simulator.png]
O simulador de robô FRC é um componente do ambiente de programação LabVIEW que permite operar um robô predefinido em um ambiente simulado para testar o código e/ou funções da Driver Station. Ele utiliza um projeto de código do LabVIEW como o código do robô e se comunica com a Driver Station para controle do robô e a Dashboard padrão para feedback do robô. O simulador de robô FRC é instalado com o pacote do LabVIEW para FRC. Informações sobre o uso do simulador de robô FRC podem ser encontradas abrindo o arquivo simulação do robô Readme.html no Explorador de Projetos do LabVIEW.

Visual Studio Code

[image: ../../../_images/visual-studio-code.png]
O Visual Studio Code é o ambiente de desenvolvimento suportado para C ++ e Java, duas das três linguagens suportadas usadas para programar um robô FRC. Ambas linguagens de programação baseadas em texto orientadas a objetos. Um programa em C ++ (para FRC) consiste em vários arquivos de cabeçalho (.h) e de implementação (.cpp), enquanto um programa em Java consiste em arquivos .java contidos em um ou mais pacotes. Um guia para começar a usar o C ++ para FRC, incluindo a instalação e configuração do Visual Studio Code, pode ser encontrado aqui.

Driver Station da FRC fornecida pela NI LabVIEW (Somente Windows)

[image: ../../../_images/frc-driver-station.png]
A Driver Station da FRC desenvolvido pelo NI LabVIEW é o único software permitido para ser usado com o objetivo de controlar o estado do robô durante a competição. Este software contém o código necessário para enviar dados ao seu robô a partir de uma variedade de dispositivos de entrada, como joysticks, gamepads e placas IO personalizáveis. Ele também contém várias ferramentas usadas para ajudar a solucionar problemas do robô, como indicadores de status e criação de arquivo de log. Instruções para instalar a Driver Station da FRC, fornecida pelo NI LabVIEW (incluída no FRC Game Tools, podem ser encontradas aqui.Mais informações sobre a estação de driver FRC, fornecida pelo NI LabVIEW, podem ser encontradas aqui.

Painel FRC LabVIEW (somente Windows)

[image: ../../../_images/frc-labview-dashboard.png]
O FRC LabVIEW Dashboard é o programa padrão do painel instalado e iniciado automaticamente pela FRC Driver Station. O objetivo do painel é fornecer feedback sobre a operação do robô. O painel padrão da FRC serve como um exemplo dos tipos de feedback que as equipes podem desejar do robô. Ele inclui uma tela com guias que pode alternar entre a visualização de uma imagem de uma câmera no robô ou uma exibição das variáveis ​​do NetworkTables, uma exibição de informações sobre os joysticks e os motores de acionamento, um indicador do IP do robô e da tensão da bateria e uma segunda aba exibição que pode alternar entre exemplos de indicadores e controles personalizados, uma guia de teste para uso com o Modo de Teste da Driver Station e uma guia lista de verificação que as equipes podem usar para inserir uma lista de verificação personalizada para concluir antes de cada partida. O painel padrão do FRC está incluído no FRC Game Tools. Instruções de instalação podem ser encontradas aqui. Mais informações sobre o software do painel padrão FRC podem ser encontradas aqui.

SmartDashboard

[image: ../../../_images/smartdashboard.png]
O SmartDashboard é um aplicativo de painel alternativo escrito no Java. O SmartDashboard cria automaticamente uma ferramenta para cada variável enviada do robô enviado usando a classe ou VIs do SmartDashboard. Essas ferramentas podem ser configuradas para vários tipos de exibição predefinidos ou os usuários podem criar extensões personalizadas em Java. As extensões de visão estão disponíveis para o SmartDashboard, que permite exibir imagens da câmera Axis no robô. O SmartDashboard está incluído nas atualizações de linguagem C ++ e Java (ativadas clicando nos botões C ++ ou Java, respectivamente, na guia Configuração do Driver Station). Documentação adicional no SmartDashboard pode ser encontrada aqui.

LiveWindow

[image: ../../../_images/livewindow-smartdashboard.png]
O LiveWindow é um modo do SmartDashboard, projetado para uso com o Modo de Teste da Driver Station. O LiveWindow permite que o usuário veja o feedback dos sensores no robô e nos atuadores de controle, independentemente do código do usuário. Mais informações sobre o LiveWindow podem ser encontradas aqui.

Shuffleboard

[image: ../../../_images/shuffleboard.png]
Shuffleboard é um aplicativo de painel alternativo escrito em Java. É preciso muitos dos conceitos do SmartDashboard, como adição automática de widgets e novos recursos, incluindo melhor controle de layout e funcionalidade de gravação / reprodução. O Shuffleboard contém todos os tipos básicos de widgets encontrados no SmartDashboard, além de vários novos destinados a tornar a visualização de componentes de robôs específicos ainda mais fácil. Possui total integração com o “cscore” do WPILib para exibir, gravar e reproduzir fluxos de câmera. O Shuffleboard está incluído nas atualizações de linguagem C ++ e Java (habilitado selecionando Shuffleboard no tipo de painel na guia Configuração do Driver Station ou iniciando-o no menu da ferramenta de inicialização WPILib no Visual Studio Code). Documentação adicional no Shuffleboard pode ser encontrada aqui.

Ferramenta de imagem FRC roboRIO (Somente Windows)

[image: ../../../_images/roborio-imaging-tool.png]
A FRC roboRIO Imaging Tool é uma ferramenta de software usada para formatar e configurar um dispositivo roboRIO-FRC para uso no FRC. A ferramenta detecta qualquer dispositivo roboRIO na rede, relata o MAC atual, nome, IP e versão da imagem. A ferramenta permite que o usuário configure o número da equipe, defina opções como Saída do console e se um aplicativo é executado na inicialização e instale a imagem mais recente do software no dispositivo. A FRC roboRIO Imaging Tool é instalada como parte do FRC Game Tools. As instruções de instalação podem ser encontradas aqui. Instruções adicionais sobre como criar imagens do seu roboRIO usando esta ferramenta podem ser encontradas aqui.

Configuração da câmera Axis (Somente Windows)

[image: ../../../_images/axis-camera-setup.png]
O utilitário Configuração da Câmera Axis é um programa do LabVIEW usado para configurar uma câmera Axis 206, M1011 ou M1013 para uso no robô. A ferramenta utiliza uma câmera de redefinição de fábrica conectada diretamente ao computador e configura o IP, nome de usuário e senha, acesso anônimo e taxa de quadros padrão e compressão (para uso com o SmartDashboard ou outros métodos de acesso). A ferramenta Setup Axis Camera é instalada como parte do FRC Game Tools. As instruções de instalação podem ser encontradas aqui. As instruções para usar a ferramenta para configurar a câmera estão localizadas aqui.

Visualizador de Registros da FRC Driver Station (Somente Windows)

[image: ../../../_images/frc-log-viewer.png]
O Visualisador de Registros da FRC Driver Station é um programa LabVIEW usado para visualizar registros criados pelo FRC Driver Station. Esses registros contêm informações como voltagem da bateria, tempo de disparo, CPU% e modo do robô, além de eventos como remoção do joystick. O visualisador de registro da FRC Driver Station está incluído no FRC Game Tools. As instruções de instalação podem ser encontradas aqui. Mais informações sobre o visualizador de registros da estação de driver FRC e a compreensão dos registros podem ser encontradas aqui.

RobotBuilder

[image: ../../../_images/robot-builder.png]
O RobotBuilder é uma ferramenta projetada para ajudar na configuração e estruturação de um projeto de robô baseado em comando para C ++ ou Java. O RobotBuilder permite que você insira os vários componentes dos subsistemas do robô e da interface do operador e defina quais são seus comandos em uma estrutura de árvore gráfica. O RobotBuilder verificará que você não possui conflitos de alocação de porta e pode gerar uma tabela de ligações indicando o que está conectado a cada porta, bem como o código C ++ ou Java. O código criado gera os arquivos apropriados, constrói os objetos apropriados e adiciona o código do LiveWindow para cada sensor e atuador, mas não grava nenhum dos métodos reais de subsistema ou comando. O usuário deve escrever o código apropriado para esses métodos para o robô funcionar. Mais informações sobre o RobotBuilder podem ser encontradas aqui. Mais informações sobre a arquitetura de programação baseada em comando podem ser encontradas aqui.

OutlineViewer

[image: ../../../_images/outline-viewer.png]
O OutlineViewer é um utilitário usado para exibir, modificar e adicionar ao conteúdo das Tabelas de Rede para fins de depuração. Ele exibe todos os pares de valores de chave atualmente nas tabelas de rede e pode ser usado para modificar o valor das chaves existentes ou adicionar novas chaves para a tabela. O OutlineViewer está incluído nas atualizações de linguagem C ++ e Java (encontradas em \tools\wpilib. As equipes talvez precisarão instalar o Java Runtime Environment para usar o OutlineViewer em computadores não configurados para programação Java.

Para conectar-se ao seu robô, abra OutlineViewer e defina a “localização do servidor” como o seu número da sua equipe. Depois de clicar iniciar, OutlineViewer se conectará.

As equipes do LabVIEW podem usar a guia Variáveis do LabVIEW Dashboard para realizar essa funcionalidade.

Utilitário de configuração de rádio FRC (Somente Windows)

[image: ../../../_images/frc-radio-configuration-utility.png]
O FRC Radio Configuration Utility é uma ferramenta usada para configurar o rádio OpenMesh OM5P-AN ou OM5P-AC para uso prático em casa. Essa ferramenta define as configurações de IP e de configurações de rede para a conexão de rede adequada, bem como as configurações de QOS necessárias para imitar a experiência de limitação de largura de banda e priorização de pacotes no campo de jogo do FRC. O utilitário de configuração de rádio FRC é instalado por um instalador autônomo; instruções sobre a instalação e o uso do utilitário de configuração de rádio FRC para configurar seu rádio podem ser encontradas aqui.

Visão geral do Hardware do Sistema de Controle de FRC®

O objetivo desse documento é fornecer uma breve visão geral dos componentes de hardware que compõem o Sistema de Controle de FRC®. Cada componente vai conter uma breve descrição da função do componente, uma breve lista de conexões críticas, e um link para mais documentação se disponível.

Note

Para instruções/diagramas de fiação completos, acesse o documento Fiação do Sistema de Controle.

National Instruments roboRIO

[image: ../../../_images/roborio.png]
O NI-roboRIO é o principal controlador de robô usado para FRC. O roboRIO inclui um processador dual-core ARM Cortex™-A9 e FPGA que executa os elementos confiáveis ​​para controle e segurança, bem como o código gerado pela equipe. O Controlador integrado I/O inclui uma variedade de protocolos de comunicação (Ethernet, USB, CAN, SPI, I2C, e serial) como PWM, servo, digital I/O, e canais analógicos I/O usados para conectar os periféricos do robô para detecção e controle. O roboRIO deve conectar-se à porta de 12V no power distribuition panel. A comunicação com fio está disponível via USB ou Ethernet. Informações detalhadas sobre o roboRIO podem ser encontradas no Manual do Usuário do roboRIO [https://www.ni.com/pdf/manuals/374474a.pdf].

Power Distribution Panel

[image: ../../../_images/power-distribution-panel.png]
A Power Distribution Panel (PDP) foi projetada para distribuir energia de uma bateria 12VDC para vários componentes do robô por meio de disjuntores com redefinição automática e um pequeno número de conexões com funções especiais. A PDP oferece 8 pares de saída classificados para corrente contínua de 40A e 8 pares classificados para corrente contínua de 30A. A PDP oferece conectores dedicados de 12V para o roboRIO, bem como conectores para o Voltage Regulator Module (VRM) e para o Pneumatics Control Module (PCM). Ela também inclui uma interface CAN para registrar a corrente, temperatura e tensão da bateria. Para informações mais detalhadas, consulte o PDP User Manual [https://www.ctr-electronics.com/downloads/pdf/PDP%20User's%20Guide.pdf].

Pneumatics Control Module

[image: ../../../_images/pneumatics-control-module.png]
A PCM é um dispositivo que contém todas as entradas e saídas necessárias para operar solenóides pneumáticas de 12V ou 24V e o compressor. A PCM é ativada/desativada pelo roboRIO através da interface CAN. A PCM contém uma entrada para o sensor de pressão e controlará o compressor automaticamente quando o robô estiver ativado e uma solenóide tiver sido criado no código. O dispositivo também coleta informações de diagnóstico, como o estado das solenóides, o estado do sensor de pressão, e o estado do compressor. O módulo inclui LEDs de diagnóstico para os canais de solenóide e CAN individualmente. Para mais informações, consulte o Manual do Usuário da PCM [https://www.ctr-electronics.com/downloads/pdf/PCM%20User's%20Guide.pdf].

Voltage Regulator Module

[image: ../../../_images/voltage-regulator-module.png]
O VRM é um módulo independente que é alimentado por 12 volts. O dispositivo está conectado a um conector dedicado a ele na PDP. O módulo possui várias saídas reguladas de 12V e 5V. O objetivo do VRM é fornecer energia regulada para o rádio do robô, circuitos personalizados e câmeras de visão IP. Os dois pares de conectores associados a cada etiqueta têm uma classificação combinada do que a etiqueta indica (por exemplo, 5V / 500mA total para ambos os pares, não para cada par). O limite de 12V / 2A é uma classificação de pico, a fonte não deve ser carregada com mais de 1,5A de corrente contínua. Para mais informações, consulte o Manual do Usuário do VRM [https://www.ctr-electronics.com/VRM%20User's%20Guide.pdf].

Controladores de Motor

Há uma variedade de controladores de motor diferentes que funcionam com o sistema de controle FRC e são aprovados para uso. Esses dispositivos são usados ​​para fornecer controle de tensão variável dos Brushed DC Motors usados ​​na FRC. Eles estão listados aqui em ordem alfabética.

Controlador SPARK Motor

[image: ../../../_images/spark-motor-controller.png]
O Controlador SPARK Motor da REV Robotics é um controlador Speed Motor para uso na FRC. O SPARK é controlado utilizando a interface PWM. Os Limit switches podem ser conectados diretamente ao SPARK para limitar o deslocamento do motor em uma ou ambas as direções. O LED de status RGB exibe o estado atual do dispositivo, incluindo se o dispositivo está atualmente em Brake mode ou Coast mode. Para mais informações, acesse o Página do produto REV Robotics SPARK [https://www.revrobotics.com/rev-11-1200/]

SPARK MAX Motor Controller

[image: ../../../_images/spark-max-motor-controller.png]
O Controlador SPARK MAX Motor da REV Robotics é um controlador Speed Motor para uso na FRC. O SPARK MAX é capaz de controlar tanto os tradicionais Brushed DC Motors comumente usados na FRC ou o novo Brushless REV Robotics NEO Brushless Motor. O SPARK MAX pode ser controlado por meio da PWM, CAN ou USB (para configuração/testagem apenas). O controlador possui uma porta de dados para entrada do sensor e é capaz de assumir modos de closed loop control quando controlado por meio CAN ou USB. Para mais informações, acesse Página do Produto REV Robotics SPARK MAX [https://www.revrobotics.com/rev-11-2158/].

Controlador Talon Motor

[image: ../../../_images/talon-motor-controller.png]
O Controlador Talon Motor pela Cross the Road Electronics é um controlador Speed Motor para uso na FRC. O Talon é controlado por meio de interface PWM . O Talon deve ser conectado a uma saída PWM do roboRIO e alimentado pela Power Distribution Panel. Para mais informações, acesse o Manual do Usuário do Talon [https://ctr-electronics.com/Talon_User_Manual_1_1.pdf].

Talon SRX

[image: ../../../_images/talonsrx-motor-controller.png]
O Controlador Talon SRX motor é um “controlador de motor inteligente” habilitado para CAN da Cross The Road Electronics/VEX Robotics. O Talon SRX possui um compartimento de metal eletricamente isolado para dissipação de calor, tornando opcional o uso de um ventilador. O Talon SRX pode ser controlado por meio CAN bus ou por interface PWM. Ao usar o controle CAN bus, esse dispositivo pode receber entradas de limit switches e potentiometers, encoders, ou sensores similares para executar um controle avançado como limitar ou PID(F) closed loop control no dispositivo. Para mais informações acesse o Manual do Usuário do Talon SRX [https://www.ctr-electronics.com/talon-srx.html].

Note

CAN Talon SRX foi removido do WPILib. Acesse blog [https://www.firstinspires.org/robotics/frc/blog/2017-control-system-update] para mais informações e encontre o Instalador CTRE Toolsuite aqui [https://www.ctr-electronics.com/Talon%20SRX%20User's%20Guide.pdf].

Controlador Victor 888 Motor / Controlador Victor 884 Motor

[image: ../../../_images/victor-888-motor-controller.png]
O Controlador Victor 888 Motor da VEX Robotics é um controlador Speed Motor para uso na FRC. O Victor 888 substitui o Victor 884, que também pode ser utilizado na FRC. O Victor é controlado por interface PWM. O Victor deve ser conectado a uma saída PWM output do roboRIO e alimentado pela Power Distribution Panel. Para mais informações, acesse o Manual do Usuário do Victor 884 [https://content.vexrobotics.com/docs/ifi-v884-users-manual-9-25-06.pdf] e Manual do Usuário do Victor 888 [https://content.vexrobotics.com/docs/217-2769-Victor888UserManual.pdf].

Victor SP

[image: ../../../_images/victor-sp-motor-controller.png]
O Victor SP motor é um controlador PWM da Cross The Road Electronics/VEX Robotics. O Victor SP possui uma carcaça de metal eletricamente isolada para dissipação de calor, tornando opcional o uso do ventilador. O dispositivo é selado para impedir que detritos entrem no controlador. O controlador é aproximadamente metade do tamanho dos modelos anteriores.

Victor SPX

[image: ../../../_images/victor-spx-motor-controller.png]
O Victor SPX motor é um controlador de motor por meio CAN ou PWM da Cross The Road Electronics/VEX Robotics. O dispositivo é conectado para permitir a fácil conexão com o os conectores roboRIO, PWM ou CAN bus chain. Quando controlado por meio CAN bus, o dispositivo tem um número de recursos de closed loop também presente no Talon SRX. O dispositivo é selado para impedir que detritos entrem no controlador. Para mais informações, acesse a Victor SPX Webpage [https://www.vexrobotics.com/217-9191.html].

Note

O controlador Victor SPX CAN não é suportado pelo WPILib. Acesse this blog [https://www.firstinspires.org/robotics/frc/blog/2017-control-system-update] para mais informações e encontre o instalador CTRE Toolsuite aqui [https://www.ctr-electronics.com/control-system/hro.html#product_tabs_technical_resources].

Spike H-Bridge Relay

[image: ../../../_images/spike-relay.png]
O Spike H-Bridge Relay da VEX Robotics é um dispositivo usado para controlar a energia de motores ou outros componentes eletrônicos de robôs personalizados. Quando conectado a um motor, o Spike oferece On/Off control nas direções direta e reversa. As saídas do Spike outputs são independentemente controladas portanto também pode ser usado para fornecer energia para até 2 circuitos eletrônicos personalizados. O Spike H-Bridge Relay deve ser conectado a uma saída relay do roboRIO e alimentado pela Power Distribution Panel. Para mais informaçõ Guia do Uusário do Spike [https://content.vexrobotics.com/docs/spike-blue-guide-sep05.pdf].

Servo Power Module

[image: ../../../_images/servo-power-module.png]
O Servo Power Module da Rev Robotics é capaz de expandir a energia disponível para os servos além do que a fonte de alimentação integrada do roboRIO é capaz. O Servo Power Module fornece até 90W de potência de 6V em 6 canais. Todos os sinais de controle são transmitidos diretamente do roboRIO. Para mais informações, acesse a Servo Power Module Webpage [https://www.revrobotics.com/rev-11-1144/].

Microsoft Lifecam HD3000

[image: ../../../_images/microsoft-lifecam.png]
A Microsoft Lifecam HD3000 é uma webcam USB que pode ser conectada diretamente ao roboRIO. A câmera é capaz de capturar vídeo de até 1280x720 a 30 FPS. Para mais informações sobre a câmera, consulte a Página do produto Microsoft [https://www.microsoft.com/accessories/en-us/products/webcams/lifecam-hd-3000/t3h-00011#support]. Para obter mais informações sobre o uso da câmera com o roboRIO, consulte a seção :ref:`Vision Processing <docs/software/vision-processing/index:Vision Processing>`deste documento.

OpenMesh OM5P-AN or OM5P-AC Radio

[image: ../../../_images/openmesh-radio.png]
Ambos os OpenMesh OM5P-AN e OpenMesh OM5P-AC wireless radio são utilizados como o rádio do robô para fornecer funcionalidade de comunicação wireless ao robô. O dispositivo pode ser configurado como um ponto de acesso para conexão direta de um laptop para uso doméstico. Também pode ser configurado como Bridge para uso em campo. O rádio do robô deve ser alimentado por uma das saídas de 12V / 2A no VRM e conectado ao controlador roboRIO por Ethernet. Para mais informações, acesse Programando seu Rádio.

O OM5P-AN não está mais disponível para compra [https://www.firstinspires.org/robotics/frc/blog/radio-silence]. O OM5P-AC é um pouco mais pesado, possui mais grades de resfriamento e possui uma textura superficial áspera em comparação com o OM5P-AN.

120A Circuit Breaker

[image: ../../../_images/circuit-breaker.png]
O 120A Main Circuit Breaker oferece duas funções no robô: a principal power switch do robô e um dispositivo de proteção para a fiação e os componentes do robô. O disjuntor 120A é conectado aos terminais positivos da bateria do robô e dos quadros de distribuição de energia. Para mais informações, acesse a Ficha de dados Cooper Bussmann 18X Series (PN: 185120F) [http://www.cooperindustries.com/content/dam/public/bussmann/Transportation/Circuit%20Protection/resources/datasheets/BUS_Tns_DS_18X_CIRCUITBREAKER.pdf]

Snap Action Circuit Breakers

[image: ../../../_images/snap-action-circuit-breaker.png]
As nap Action circuit breakers, MX5-A40 and VB3 series, são usadas com a Power Distribution Panel para limitar a corrente aos circuitos de derivação. A MX5-A40 40A MAXI style circuit breaker é usada com os canais maiores na Power Distribution Panel para alimentar cargas que consomem corrente de até 40A. A VB3 series são usados ​​com os canais menores no PDP para alimentar os circuitos com corrente de 30 A ou menos. Para mais informações, acesse as fichas de dados para a MX5 series [http://www.snapaction.net/pdf/MX5%20Spec%20Sheet.pdf] e VB3 Series [http://www.snapaction.net/pdf/vb3.pdf].

Robot Battery

[image: ../../../_images/robot-battery.png]
A fonte de alimentação de um robô de FRC é uma única bateria de 12V 18Ah. As baterias usadas para FRC são baterias de chumbo-ácido seladas, capazes de atender às altas demandas de corrente de um robô FRC. Para obter mais informações, consulte os dados para o MK ES17-12 [https://www.batteryuniverse.com/msds/sealed-lead-acid-msds.pdf] e nersys NP18-12 [https://www.enersys.com/WorkArea/DownloadAsset.aspx?id=488].

Note

Outros números de peça da bateria podem ser legais, consulte o Manual FRC [https://www.firstinspires.org/resource-library/frc/competition-manual-qa-system] para uma lista completa.

Crédito das Imagens

Imagem do roboRIO, cortesia da National Instruments. Imagens do Talon SRX, Victor 888, Victor SP, Victor SPX, e Spike H-Bridge Relay cortesia da VEX Robotics, Inc. Imagem do SPARK MAX cortesia da REV Robotics. Imagens da Lifecam, PDP, PCM, SPARK, e VRM cortesia da FIRST®. Todas as outras fotos são cortesia da AndyMark Inc.

Offline Installation Preparation

This article contains instructions/links to components you will want to gather if you need to do offline installation of the FRC® Control System software.

Documentation

This documentation can be downloaded for offline viewing. The link to download the PDF can be found here [https://buildmedia.readthedocs.org/media/pdf/frc-docs/latest/frc-docs.pdf].

Installers

All Teams

	2020 FRC Game Tools [https://www.ni.com/en-us/support/downloads/drivers/download.frc-game-tools.html] (Note: Click on link for “Individual Offline Installers”)

	2020 FRC Radio Configuration Utility [https://firstfrc.blob.core.windows.net/frc2020/Radio/FRC_Radio_Configuration_20_0_0.zip] or 2020 FRC Radio Configuration Utility Israel Version [https://firstfrc.blob.core.windows.net/frc2020/Radio/FRC_Radio_Configuration_20_0_0_IL.zip]

	(Optional - Veterans Only!) Classmate/Acer PC Image [https://frc-events.firstinspires.org/services/DSImages/]

LabVIEW Teams

	LabVIEW USB (from FIRST® Choice) or Download [https://www.ni.com/en-us/support/downloads/drivers/download.labview-software-for-frc.html] (Note: Click on link for “Individual Offline Installers”)

C++/Java Teams

	C++/Java WPILib Installer [https://github.com/wpilibsuite/allwpilib/releases]

	Visual Studio Code (if using Windows, run the installer and use it to download the appropriate VS Code file. If using macOS/Linux, download Visual Studio Code from here [https://code.visualstudio.com/download])

3rd Party Libraries/Software

A number of software components were broken out of WPILib in 2017 and are now maintained by third parties. See this blog [https://www.firstinspires.org/robotics/frc/blog/2017-control-system-update] for more details.

A directory of available 3rd party software that plugs in to WPILib can be found on docs/software/wpilib-overview/3rd-party-libraries:3rd Party Libraries.

Instalando LabVIEW para FRC (LabVIEW apenas)

[image: ../../../_images/ni_logo.png]

Note

Esta instalação é para times que programam em LabVIEW ou usam o NI Vision Assistant apenas. Times que utilizam C++ e Java que não estão utilizando estes recursos não precisam instalar a partir do DVD e devem prosseguir para Instalando FRC Game Tools.

O tempo para download e instalação varia muito de acordo com as especificações de conexão do computador, no entanto, note que esse processo envolve o download e a instalação de um arquivo grande e provavelmente levará pelo menos uma hora para ser concluído.

Desinstale as Versões Antigas (Recomendado)

Note

Se você deseja continuar utilizando cRIOs você precisará manter uma instalação do LabVIEW para FRC 2014. A licença para o LabVIEW para FRC 2014 foi estendida. Embora essas versões possam coexistir em um único computador, essa não é uma configuração extensivamente testada.

Antes de instalar a nova versão do LabVIEW, é recomendado remover as versões antigas. A nova versão provavelmente coexistirá com a versão antiga, porém todos os testes foram feitos apenas com a FRC 2020. Certifique-se de fazer um backup de qualquer código do time localizado no diretório “User\LabVIEW Data” antes de desinstalar. Em seguida clique em Iniciar >> Adicionar ou Remover Programas. Localize “National Instruments Software” e selecione “Uninstall”.

[image: ../../../_images/uninstall_old_control_panel.png]

Selecione Componentes para Desinstalar

Na caixa de diálogo exibida, selecione todas as entradas. A maneira mais fácil de fazer isso é desmarcar a caixa de seleção “Products Only” e marcar a caixa de seleção à esquerda de “Name”. Clique em “Remove”. Aguarde o desinstalador concluir e, se solicitado, reinicie o computador.

Warning

Essas instruções assumem que nenhum outro software da National Instruments esteja instalado. Se você tiver outro software da National Instruments instalado, é necessário desmarcar o software que não deve ser desinstalado.

[image: ../../../_images/uninstall_select_components.png]

Getting LabVIEW installer

Either locate and insert the LabVIEW USB Drive or download the LabVIEW 2020 installer from https://www.ni.com/en-us/support/downloads/drivers/download.labview-software-for-frc.html

[image: ../../../_images/offline-installer.png]
If you wish to install on other machines offline, do not click the Download button, click Individual Offline Installers and then click Download, to download the full installer.

Note

This is a large download (~8GB). It is recommended to use a fast internet connection and to use the NI Downloader to allow the download to resume if interrupted.

Installing LabVIEW

National Instruments LabVIEW requires a license. Each season’s license is active until January 31st of the following year (e.g. the license for the 2020 season expires on January 31, 2021)

Teams are permitted to install the software on as many team computers as needed, subject to the restrictions and license terms that accompany the applicable software, and provided that only team members or mentors use the software, and solely for FRC. Rights to use LabVIEW are governed solely by the terms of the license agreements that are shown during the installation of the applicable software.

Welcome

Starting Install

Online Installer

Offline Installer (Windows 10)

Offline Installer (Windows 7, 8, & 8.1)

Run the downloaded exe file to start the install process. Click “Yes” if a Windows Security prompt

Right click on the downloaded iso file and select mount. Run install.exe from the mounted iso. Click “Yes” if a Windows Security prompt

Note

other installed programs may associate with iso files and the mount option may not appear. If that software does not give the option to mount or extract the iso file, then follow the directions in the “Offline Installer (Windows 7, 8, & 8.1)” tab.

[image: ../../../_images/mount-iso.png]

Install 7-Zip (download here [https://www.7-zip.org]). As of the writing of this document, the current released version is 19.00 (2019-02-21).
Right click on the downloaded iso file and select Extract to.

[image: ../../../_images/extract-iso.png]
Run install.exe from the extracted folder. Click “Yes” if a Windows Security prompt Click “Yes” if a Windows Security prompt appears.

NI Package Manager License

[image: ../../../_images/ni-package-license.png]
If you see this screen, click “Next”

Disable Windows Fast Startup

[image: ../../../_images/labview_fast_startup.png]
If you see this screen, click “Next”

NI Package Manager Review

[image: ../../../_images/labview_package_manager_review.png]
If you see this screen, click “Next”

NI Package Manager Installation

[image: ../../../_images/ni-package-install.png]
Installation progress of the NI Package Manager will be tracked in this window

Product List

[image: ../../../_images/labview_product_list.png]
Click “Next”

Additional Packages

[image: ../../../_images/labview_additional_software.png]
Click “Next”

License agreements

[image: ../../../_images/labview_license_1.png]
Check “I accept…” then Click “Next”

[image: ../../../_images/labview_license_2.png]
Check “I accept…” then Click “Next”

Product Information

[image: ../../../_images/labview_product_info.png]
Click “Next”

Start Installation

[image: ../../../_images/labview_start_install.png]
Click “Next”

Overall Progress

[image: ../../../_images/labview_install_progress.png]
Overall installation progress will be tracked in this window

NI Update Service

[image: ../../../_images/ni_update_enable.png]
You will be prompted whether to enable the NI update service. You can choose to not enable the update service.

Warning

It is not recommended to install these updates unless directed by FRC through our usual communication channels (FRC Blog, Team Updates or E-mail Blasts).

NI Activation Wizard

[image: ../../../_images/ni_activation_login.png]
Log into your ni.com account. If you don’t have an account, select ‘Create account’ to create a free account.

[image: ../../../_images/ni_activation_keys.png]
The serial number you entered at the “User Information” screen should appear in all of the text boxes, if it doesn’t, enter it now. Click “Activate”.

Note

If this is the first time activating the 2020 software on this account, you will see the message shown above about a valid license not being found. You can ignore this.

[image: ../../../_images/ni_activation_success.png]
If your products activate successfully, an “Activation Successful” message will appear. If the serial number was incorrect, it will give you a text box and you can re-enter the number and select “Try Again”. The items shown above are not expected to activate. If everything activated successfully, click “Next”.

[image: ../../../_images/ni_activation_finish.png]
Click “Close”.

Restart

[image: ../../../_images/labview_restart.png]
Select “Reboot Now” after closing any open programs.

Installing the FRC Game Tools

The FRC Game Tools contains the following software components:
LabVIEW Update, FRC Driver Station, and FRC Utilities. The
LabVIEW runtime components required for the Driver Station and
Utilities are included in this package. No components from the
LabVIEW Software for FRC package are required for running either the Driver
Station or Utilities.

Note

The Driver Station will only work on Windows 7, Windows 8,Windows 8.1, and Windows 10. It will not work on Windows XP.

Uninstall Old Versions (Recommended)

Warning

LabVIEW teams have already completed this step, do not repeat it.

Note

It is only necessary to uninstall previous versions when installing a new year’s tools. For example, uninstall the 2019 tools before installing the 2020 tools. It is not necessary to uninstall before upgrading to a new update of the 2020 game tools.

Before installing the new version of the FRC Game Tools it is recommended to remove any old versions. The new version will likely co-exist with the old version (note that the DS will overwrite old versions), but all testing has been done with FRC 2020 only. Then click Start >> Add or Remove Programs. Locate the entry labeled “National Instruments Software”, and select Uninstall.

[image: ../../../_images/uninstall_old_control_panel.png]

Select Components to Uninstall

In the dialog box that appears, select all entries. The easiest way to do this is to de-select the “Products Only” check-box and select the check-box to the left of “Name”. Click Remove. Wait for the uninstaller to complete and reboot if prompted.

[image: ../../../_images/uninstall_select_components.png]

Downloading the Update

Download the update from
https://www.ni.com/en-us/support/downloads/drivers/download.frc-game-tools.html

[image: ../../../_images/offline-installer.png]
If you wish to install on other machines offline, do not click the Download button, click Individual Offline Installers and then click Download, to download the full installer.

.NET Framework 4.6.2

The Game Tools installer may prompt that .NET Framework 4.6.2 needs to be
updated or installed. Follow prompts on-screen to complete the
installation, including rebooting if requested. Then resume the
installation of the FRC Game Tools, restarting the installer if
necessary.

Welcome

Starting Install

Online Installer

Offline Installer (Windows 10)

Offline Installer (Windows 7, 8, & 8.1)

Run the downloaded exe file to start the install process. Click “Yes” if a Windows Security prompt

Right click on the downloaded iso file and select mount. Run install.exe from the mounted iso. Click “Yes” if a Windows Security prompt

[image: ../../../_images/mount-iso.png]

Note

other installed programs may associate with iso files and the mount option may not appear. If that software does not give the option to mount or extract the iso file, then follow the directions in the “Offline Installer (Windows 7, 8, & 8.1)” tab.

Install 7-Zip (download here [https://www.7-zip.org]). As of the writing of this document, the current released version is 19.00 (2019-02-21).
Right click on the downloaded iso file and select Extract to.

[image: ../../../_images/extract-iso.png]
Run install.exe from the extracted folder. Click “Yes” if a Windows Security prompt Click “Yes” if a Windows Security prompt appears.

NI Package Manager License

[image: ../../../_images/ni-package-license.png]
If you see this screen, click “Next”

Disable Windows Fast Startup

[image: ../../../_images/labview_fast_startup.png]
If you see this screen, click “Next”

NI Package Manager Review

[image: ../../../_images/labview_package_manager_review.png]
If you see this screen, click “Next”

NI Package Manager Installation

[image: ../../../_images/ni-package-install.png]
Installation progress of the NI Package Manager will be tracked in this window

Product List

Additional Software

[image: Additional Software]

If you see this screen, click “Next”

License Agreements

[image: License Agreements]

Select “I accept…” then click “Next”

License Agreements Page 2

[image: License Agreements Page 2]

If you see this screen, select “I accept…” then click “Next”

Review Summary

[image: Review Summary]

Click Next

Detail Progress

[image: Detail Progress]
Detail Progress

Installation Summary

[image: Installation Summary]

click Close

NI Activation Wizard

[image: NI Activation Wizard]

Log into your ni.com account. If you don’t have
an account, select ‘Create account’ to create a free account.

NI Activation Wizard (2)

[image: NI Activation Wizard 2]

Enter the serial number. Click “Activate”. Note: If this is the first time
activating this year’s software on this account, you will see the message
shown above about a valid license not being found. You can ignore this.

NI Activation Wizard (3)

[image: NI Activation Wizard 3]

If your products activate successfully, an
“Activation Successful” message will appear. If the serial number was
incorrect, it will give you a text box and you can re-enter the number
and select “Try Again”. If everything activated successfully, click
“Next”.

NI Activation Wizard (4)

[image: NI Activation Wizard 4]

Click “Close”.

NI Update Service

[image: ../../../_images/ni_update_enable.png]
You will be prompted whether to enable the NI update service. You can choose to not enable the update service.

Reboot to Complete Installation

[image: ../../../_images/labview_restart.png]
If prompted, Select “Reboot Now” after closing any open programs.

Como fazer o cabeamento de um robo para FRC

Note

Este documento descreve como fazer o cabeamento de uma chapa com componentes eletrônicos para testes.

Algumas das imagens presentes nessa seção demonstram o Setup do sistema de controle de um robô que utiliza controladores de motor Spark. Os diagramas e layouts do cabeamento a seguir são bem parecidos com o dos demais controladores. Há também um segundo set de imagens que demonstram o passo a passo do cabeamento de controladores PWM com fios integrados.

Materiais e componentes

[image: ../../../_images/image0.jpg]
Você vai precisar dos seguintes componentes eletrônicos e ferramentas

	Mateirais do KIT:

	Power Distribution Panel (PDP)

	roboRIO

	Pneumatics Control Module (PCM)

	Voltage Regulator Module (VRM)

	OpenMesh radio (com seu cabo de alimentação POE)

	Robot Signal Light (RSL)

	4x Victor SPX ou outro controlador de motor

	120A Circuit breaker

	4x 40A Circuit breaker

	Fio vermelho e preto de 6 AWG (4,1mm de seção)

	Fio vermelho e preto de 10 AWG (2,5mm de seção)

	Fio vermelho e preto de 18 AWG (1mm de seção)

	Fio amarelo e verde de 22AWG

	16x 10-12 AWG terminais em olho (amarelos)

	2x Anderson SB50

	Terminais em olho de 6 AWG

	Baterida 12V

	Fita isolante

	Zip ties

	Compensado de 1/2” ou 1/4”. Ou Policarbonato

	Ferramentas nescessaárias:

	Chave de fenda pequena

	Chave de fenda muito pequena (do tipo utilizdado em ajuste de óculos)

	Chave Phillips

	Chave Allen de 5mm

	Chave Allen de 1/16”

	Alicate desemcapador e de corte

	Chave de boca de 7/16”

Construindo a base do para o Sistema de Controle

Para a produção da base, corte uma chapa (madeira ou plástico) de 1/4” ou 1/2” de espessura e aproximadamente 24” x 16”. Se for o caso de um chassi pré-fabricado, consulte a documentação e verifique o tamanho ideal para a configuração do chassi correspondente.

Organize os principais componentes do Sistema de Controle

[image: ../../../_images/image1.jpg]
Organize os componentes na chapa. O layout da imagem acima é um bom exemplo.

[image: ../../../_images/image2.png]

Fixe os componentes

Utilizando fitas dupla-face (VHB por exemplo) ou ZIP ties, prenda todos componentes à base. Tenha em mente que, em muitos dos jogos da FRC, há constante toque físico entre os robôs. Muitos times optam por utilizar fitas dupla face e, principalmente, ZIP ties para garantir a fixação apropriada dos componentes.

Fixe o conector da bateria à PDP

[image: ../../../_images/image3.jpg]
Requer: Conector Anderson, Terminal olho de 6AWG , Allen de 1/16”, Alle de 5mm e a chave de boca 7/16”

Prenda os terminais em olho ao Conector da bateria:

	Utilizando a Allen 1/16”, retire os dois parafusos que prendem a proteção dos terminais da PDP.

	Utilizando a Allen 5mm, remova o parafuso e a arruela que que fica rosqueadas ao o polo negativo da PDP e prenda o terminal negativo do conector da bateria.

	Utilizando a chave de boca 7/16”, remova a proteção de borracha e a porca do parafuso do Disjuntor principal, encaixe o terminal positivo do conector de bateria e prenda-o bem com a porca.

Conecte o Disjuntor principal à PDP

[image: ../../../_images/image4.jpg]
Requer: Fio vermelho de 6AWG, 2x terminais olho de 6AWG, Allen de 5mm e a chave de boca 7/16”.

Crimpe um terminal olho na ponta do fio vermelho de 6AWG. Retire a porca rosqueada ao parafuso do lado “AUX” do disjuntor principal (utilizando a chave de boca 7/16”), encaixe o terminal do cabo no parafuso e rosqueie a porca, prendendo-o. Meça o comprimento nescessário para que o cabo chegue ao terminal positivo da PDP.

	Corte, encaixa e crimpe o terminal ao outro lado do fio vermelho de 6AWG.

	Utilizando a chave de boca 7/16”, prenda o fio ao lado “AUX” do disjuntor principal de 120A.

	Utilizando a Allen de 5mm, prenda a outra ponta ao teminal positivo da PDP.

Isole as conexões da PDP

[image: ../../../_images/image5.jpg]
Requer: Allen 1/16”, Fita isolante

	Utilizando a fita isolante, isole as duas conexões do disjuntor principal. Isole a parte dos terminais da PDP que irão entrar em contato com a proteção quando for presa novamente. Uma maneira de isolar as conexões do disjuntor principal é passar a fita no cabo e na porca antes de serem presos e, depois de presos, passar fita novamente.

	Utilizando a Allen de 1/16”, prenda a proteção dos terminais à PDP.

Conectores Wago

 Formatando seu roboRIO

Formatando seu roboRIO

Warning

Antes de criar imagens do seu roboRIO, você deve ter concluído a instalação do Ferramentas de jogo FRC. Você também deve ter a energia do roboRIO conectada corretamente ao painel de distribuição de energia. Verifique se os fios de energia do roboRIO estão seguros e se o conector está bem firme no roboRIO (4 parafusos no total para verificar).

Configurando o roboRIO

A ferramenta de imagem roboRIO será usada para criar uma imagem do seu roboRIO com o software mais recente.

Conexão USB

[image: ../../../_images/usb-connection.png]
Conecte um cabo USB da porta do dispositivo USB roboRIO ao PC. Isso requer um cabo USB tipo A macho (extremidade padrão do PC) para tipo B cabo macho (quadrado com 2 cantos cortados), mais comumente encontrado como cabo USB da impressora.

Note

O roboRIO só deve ser visualizado através da conexão USB. Não é recomendável tentar criar imagens usando a conexão Ethernet.

Instalação do Driver

O Driver do dispositivo deve ser instalado automaticamente. Se você ver um pop-up “Dispositivo Novo” no canto inferior direito da tela, aguarde a instalação do driver antes de continuar.

Iniciando a ferramenta de imagem

[image: ../../../_images/launching-the-imaging-tool.png]
A ferramenta de imagem roboRIO e a imagem mais recente são instaladas com as ferramentas do jogo FRC da NI. Inicie a ferramenta de criação de imagens clicando duas vezes no atalho na área de trabalho. Se você tiver dificuldades em criar imagens do seu roboRIO, pode ser necessário clicar com o botão direito do mouse no ícone e selecionar Executar como administrador.

Note

A ferramenta de criação de imagens roboRIO também está localizada C:\Program Files (x86)\National Instruments\LabVIEW YYYY\project\roboRIO Tool``onde YYYY é o ano atual - 1. Se for 2020, o diretório seria ``LabVIEW 2019.

Ferramenta de imagem do roboRIO

[image: ../../../_images/roborio-imaging-tool.png]
Após do lançamento, a ferramenta de imagem roboRIO procurará os roboRIOs disponíveis e indicará qualquer um encontrado na caixa superior esquerda. A caixa inferior esquerda mostra informações e configurações do roboRIO selecionado atualmente. O painel direito contém controles para modificar as configurações do roboRIO:

	Editar configurações de inicialização - Esta opção é usada quando você deseja definir as configurações de inicialização do roboRIO (as configurações no painel direito), sem gerar imagens do roboRIO.

	Formatar alvo - Esta opção é usada quando você deseja carregar uma nova imagem no roboRIO (ou atualizar novamente a imagem existente). Essa é a opção mais comum.

	Atualizar Firmware - Esta opção é usada para atualizar o firmware do roboRIO. Para esta temporada, a ferramenta de criação de imagens exigirá que o firmware do roboRIO seja da versão 5.0 ou superior.

Atualização do Firmware

[image: ../../../_images/updating-firmware.png]
O firmware do roboRIO deve ter pelo menos a versão 5.0 para funcionar com a imagem de 2019. Se o seu roboRIO tiver pelo menos a versão 5.0 (como mostrado na parte inferior esquerda da ferramenta de criação de imagens), você não precisará atualizar.

Para atualizar o firmware do roboRIO:

	Verifique se o seu roboRIO está selecionado no painel superior esquerdo.

	Selecione atualizar firmware no painel superior direito.

	Digite um número de equipe na caixa Número da equipe.

	Selecione o arquivo firmware mais recente no canto inferior direito.

	Clique no botão atualizar.

Visualizando o roboRIO

[image: ../../../_images/imaging-the-roborio.png]

	Verifique se o roboRIO está selecionado no painel superior esquerdo.

	Selecione formatar alvo no painel direito.

	Digite o número da sua equipe na caixa.

	Selecione a versão mais recente da imagem na caixa.

	Clique em reformatar para iniciar o processo de visualização da imagem.

Progresso de visualização da imagem

[image: ../../../_images/imaging-progress.png]
O processo de visualização da imagem levará aproximadamente de 3 a 10 minutos. Uma barra de progresso no canto inferior esquerdo da janela indicará o progresso.

Visualização completa

[image: ../../../_images/imaging-complete.png]
Quando a imagem for concluída, você deverá ver a caixa de diálogo acima. Clique em Ok e clique no botão Fechar no canto inferior direito para fechar a ferramenta de criação de imagens. Reinicie o roboRIO usando o botão Redefinir para que o novo número da equipe entre em vigor.

Note

A funcionalidade padrão de webdash CAN foi removida da imagem (os dispositivos CAN ainda funcionarão com o código do robô). Você precisará usar as ferramentas fornecidas por fornecedores individuais para atender seus dispositivos CAN.

Solução de problemas

Se você não conseguir criar uma imagem do seu roboRIO, as etapas de solução de problemas incluem:

	Tente executar a ferramenta de imagem roboRIO como administrador clicando com o botão direito do mouse no ícone da área de trabalho para iniciá-la.

	Tente acessar a página do roboRIO com um navegador da web em http://172.22.11.2/ e / ou verifique se o adaptador de rede da NI aparece na sua lista de adaptadores de rede no painel de controle. Caso contrário, tente reinstalar o NI FRC Game Tools ou tente um PC diferente.

	Verifique se o seu firewall está desligado.

	Experimente um PC diferente.

	Algumas equipes enfrentam um problema em que a criação de imagens falha se o nome do dispositivo do computador que você está usando tiver um traço (`` -``). Tente renomear o computador (ou usando um PC diferente).

	Tente inicializar o roboRIO no modo de segurança pressionando e segurando o botão de reset por pelo menos 5 segundos.

 Programming your Radio

Programming your Radio

This guide will show you how to use the FRC Radio Configuration Utility software to configure your robot’s wireless bridge for use outside of FRC events.

Before you begin using the software:

	Disable WiFi connections on your computer, as it may prevent the configuration utility from properly communicating with the bridge

	Make sure no devices are connected to your computer via ethernet, other than the wireless bridge.

Warning

The OM5P-AN and AC use the same power plug as the D-Link DAP1522, however they are 12V radios. Wire the radio to the 12V 2A terminals on the VRM (center-pin positive).

Pre-Requisites

The FRC Radio Configuration Utility requires the Java Runtime Engine (JRE). If you do not have Java installed, you can download the JRE from here: https://www.java.com/en/download/

The FRC Radio Configuration Utility requires Administrator privileges to configure the network settings on your machine. The program should request the necessary privileges automatically (may require a password if run from a non-Administrator account), but if you are having trouble, try running it from an Administrator account.

Application Notes

By default, the Radio Configuration Utility will program the radio to enforce the 4Mbps bandwidth limit on traffic exiting the radio over the wireless interface. In the home configuration (AP mode) this is a total, not a per client limit. This means that streaming video to multiple clients is not recommended.

The Utility has been tested on Windows 7, 8 and 10. It may work on other operating systems, but has not been tested.

Programmed Configuration

[image: ../../../_images/radioLight.png]
The Radio Configuration Utility programs a number of configuration settings into the radio when run. These settings apply to the radio in all modes (including at events). These include:

	Set a static IP of 10.TE.AM.1

	Set an alternate IP on the wired side of 192.168.1.1 for future programming

	Bridge the wired ports so they may be used interchangeably

	The LED configuration noted in the graphic above.

	4Mb/s bandwidth limit on the outbound side of the wireless interface (may be disabled for home use)

	QoS rules for internal packet prioritization (affects internal buffer and which packets to discard if bandwidth limit is reached). These rules are:

	Robot Control and Status (UDP 1110, 1115, 1150)

	Robot TCP & Network Tables (TCP 1735, 1740)

	Bulk (All other traffic). (disabled if BW limit is disabled)

	DHCP server enabled. Serves out:

	10.TE.AM.11 - 10.TE.AM.111 on the wired side

	10.TE.AM.130 - 10.TE.AM.230 on the wireless side

	Subnet mask of 255.255.255.0

	Broadcast address 10.TE.AM.255

	DNS server enabled. DNS server IP and domain suffix (.lan) are served as part of the DHCP.

At home only:

	SSID may have a “Robot Name” appended to the team number to distinguish multiple networks.

	Firewall option may be enabled to mimic the field firewall rules (open ports may be found in the Game Manual)

Warning

It is not possible to modify the configuration manually

Download the software
Download the latest FRC Radio Configuration Utility Installer from the following links:

FRC Radio Configuration 20.0.0 [https://firstfrc.blob.core.windows.net/frc2020/Radio/FRC_Radio_Configuration_20_0_0.zip]

FRC Radio Configuration 20.0.0 Israel Version [https://firstfrc.blob.core.windows.net/frc2020/Radio/FRC_Radio_Configuration_20_0_0_IL.zip]

Note

The _IL version is for Israel teams and contains a version of the OM5PAC firmware with restricted channels for use in Israel.

Warning

Version 19.1.1 corrects an issue with applying the Bandwidth Limit present in version 19.1.0. Teams should install the new version, then re-program their radio (there is no need to re-flash the firmware).

Install the software

[image: ../../../_images/radio-installer.png]
Double click on FRC_Radio_Configuration_VERSION.exe to launch the installer. Follow the prompts to complete the installation.

Part of the installation prompts will include installing Npcap if it is not already present. The Npcap installer contains a number of checkboxes to configure the install. You should leave the options as the defaults.

Launch the software

[image: ../../../_images/radio-launch.png]
Use the Start menu or desktop shortcut to launch the program.

Note: If you need to locate the program it is installed to C:Program Files (x86)FRC Radio Configuration Utility. For 32-bit machines the path is C:Program FilesFRC Radio Configuration Utility

Allow the program to make changes, if prompted

[image: ../../../_images/allow-changes.png]
If the your computer is running Windows Vista or Windows 7, a prompt may appear about allowing the configuration utility to make changes to the computer. Click “Yes” if the prompt appears.

Select the network interface

[image: ../../../_images/select-network-connection.png]
Use the pop-up window to select the which ethernet interface the configuration utility will use to communicate with the wireless bridge. On Windows machines, ethernet interfaces are typically named “Local Area Connection”. The configuration utility can not program a bridge over a wireless connection.

	If no ethernet interfaces are listed, click “Refresh” to re-scan for available interfaces

	Select the interface you want to use from the drop-down list

	Click “OK”

Open Mesh Firmware Note

For the FRC Radio Configuration Utility to program the OM5P-AN and OM5P-AC radio, the radio must be running an FRC specific build of the OpenWRT firmware. OM5P-AC radios in the 2019 KoP should not need an update.

If you do not need to update or re-load the firmware, skip the next step.

Warning

Note: Radios used in 2019 do not need to be updated before configuring, the 2020 tool uses the same 2019 firmware.

Loading FRC Firmware to OpenMesh radio

[image: ../../../_images/openmesh-firmware.png]
If you need to load the FRC firmware (or reset the radio), you can do so using the FRC Radio Configuration Utility.

	Follow the instructions above to install the software, launch the program and select the Ethernet interface.

	Make sure the OpenMesh radio is selected in the Radio dropdown.

	Make sure the radio is connected to the PC via Ethernet.

	Unplug the power from the radio. (If using a PoE cable, this will also be unplugging the Ethernet to the PC, this is fine)

	Press the Load Firmware button

	When prompted, plug in the radio power. The software should detect the radio, load the firmware and prompt you when complete.

Warning

If you see an error about NPF name, try disabling all adapters other than the one being used to program the radio. If only one adapter is found, the tool should attempt to use that one. See the steps in “Troubleshooting: Disabling Network Adapters” for more info.

Teams may also see this error with foreign language Operating Systems. If you experience issues loading firmware or programming on a foreign language OS, try using an English OS, such as on the KOP provided PC or setting the Locale setting to “en_us” as described on this page [https://www.java.com/en/download/help/locale.xml].

Select a bridge model and operating mode

[image: ../../../_images/select-bridge-model-mode.png]

	Select which radio you are configuring using the drop-down list.

	Select which operating mode you want to configure. For most cases, the default selection of 2.4GHz Access Point will be sufficient. If your computers support it, the 5GHz AP mode is recommended, as 5GHz is less congested in many environments.

Select Options

[image: ../../../_images/select-options.png]
The default values of the options have been selected to match the use case of most teams, however, you may wish to customize these options to your specific scenario:

	Robot Name: This is a string that gets appended to the SSID used by the radio. This allows you to have multiple networks with the same team number and still be able to distinguish them.

	Firewall: If this box is checked, the radio firewall will be configured to attempt to mimic the port blocking behavior of the firewall present on the FRC field. For a list of open ports, please see the FRC Game Manual.

	BW Limit: If this box is checked, the radio enforces a 4MB/s bandwidth limit like it does when programmed at events. Note that in AP mode, this is a total limit, not per client, so streaming video to multiple clients simultaneously may cause undesired behavior.

Note

Firewall and BW Limit only apply to the OpenMesh radios. These options have no effect on D-Link radios.

Warning

The “Firewall” option configures the radio to emulate the field firewall. This means that you will not be able to deploy code wirelessly with this option enabled.

Prepare and start the configuration process

[image: ../../../_images/start-config.png]
Follow the on-screen instructions for preparing your wireless bridge, entering the settings the bridge will be configured with, and starting the configuration process. These on-screen instructions update to match the bridge model and operating mode chosen.

Configuration Progress

[image: ../../../_images/config-in-progress.png]
Throughout the configuration process, the window will indicate:

	The step currently being executed

	The overall progress of the configuration process

	All steps executed so far

Configuration completed

[image: ../../../_images/config-completed.png]
Once the configuration is complete:

	Press “OK” on the dialog window

	Press “OK” on the main window to return to the settings screen

Configuration errors

[image: ../../../_images/config-errors.png]
If an error occurs during the configuration process, follow the instructions in the error message to correct the problem.

Troubleshooting: Disabling Network Adapters

If you get an error message about “NPF adapter” when attempting to load firmware, you need to disable all other adapters. This is not always the same as turning the adapters off with a physical button or putting the PC into airplane mode. The following steps provide more detail on how to disable adapters.

[image: ../../../_images/open-control-panel.png]
Open the Control Panel by going to Start->Control Panel

[image: ../../../_images/network-internet.png]
Choose the Network and Internet category.

[image: ../../../_images/network-and-sharing-center.png]
Click Network and Sharing Center

[image: ../../../_images/adapter-settings.png]
On the left pane, click Change Adapter Settings

[image: ../../../_images/disable-network-adapter.png]
For each adapter other than the one connected to the radio, right click on the adapter and select Disable from the menu.

 Getting Started with a Benchtop Robot

Getting Started with a Benchtop Robot

	Creating your Benchtop Test Program (LabVIEW)

	Running your Benchtop Test Program

 Creating your Benchtop Test Program (LabVIEW)

Creating your Benchtop Test Program (LabVIEW)

This document covers how to create, build and load an FRC LabVIEW program onto a roboRIO. Before beginning, make sure that you have installed LabVIEW for FRC and the FRC Driver Station and that you have configured and imaged your roboRIO as described previously.

Creating a Project

[image: ../../../_images/labview-home.png]
Launch LabVIEW and click the FRC roboRIO Robot Project link in the Projects window to display the Create New FRC Robot Project dialog box.

Configuring Project

[image: ../../../_images/labview-create-project.png]
Fill in the Create New FRC Project Dialog:

	Pick a name for your project

	Select a folder to place the project in.

	Enter your team number

	Select a project type. If unsure, select Arcade Drive - roboRIO.

	Click Finish

Running the Program

[image: ../../../_images/labview-benchtop-run-live.png]

	In the Project Explorer window, double-click the Robot Main.vi item to open the Robot Main VI.

	Click the Run button (White Arrow on the top ribbon) of the Robot Main VI to deploy the VI to the roboRIO. LabVIEW deploys the VI, all items required by the VI, and the target settings to memory on the roboRIO. If prompted to save any VIs, click Save on all prompts.

	Click the Abort button of the Robot Main VI. Notice that the VI stops. When you deploy a program with the Run button, the program runs on the roboRIO, but you can manipulate the front panel objects of the program from the host computer.

Note

A program deployed in this manner will not remain on the roboRIO after a power cycle. To deploy a program to run every time the roboRIO starts follow the next step, Deploying the program.

Deploying the program

[image: ../../../_images/labview-benchtop-deploy-startup.png]
To run in the competition, you will need to deploy a program to your roboRIO. This allows the program to survive across reboots of the controller, but doesn’t allow the same debugging features (front panel, probes, highlight execution) as running from the front panel. To deploy your program:

	In the Project Explorer, click the + next to Build Specifications to expand it.

	Right-click on FRC Robot Boot-up Deployment and select Build. Wait for the build to complete.

	Right-click again on FRC Robot Boot-Up Deployment and select Run as Startup. If you receive a conflict dialog, click OK. This dialog simply indicates that there is currently a program on the roboRIO which will be terminated/replaced.

	Either check the box to close the deployment window on successful completion or click the close button when the deployment completes.

	The roboRIO will automatically start running the deployed code within a few seconds of the dialog closing.

 Running your Benchtop Test Program

Running your Benchtop Test Program

Overview

You should create and download a Benchtop Test Program as described for your programming language:

C++/Java

LabVIEW

Tethered Operation

Running your benchtop testing program while tethered to the Driver Station via ethernet or USB cable will confirm the the program was successfully deployed and that the driver station and roboRIO are properly configured.

The roboRIO should be powered on and connected to the PC over Ethernet or USB.

Starting the FRC Driver Station

[image: ../../../_images/ds-icon.png]
The FRC Driver Station can be launched by double-clicking the icon on the Desktop or by selecting Start->All Programs->FRC Driver Station.

Setting Up the Driver Station

[image: ../../../_images/ds-setup.png]
The DS must be set to your team number in order to connect to your robot. In order to do this click the Setup tab then enter your team number in the team number box. Press return or click outside the box for the setting to take effect.

PCs will typically have the correct network settings for the DS to connect to the robot already, but if not, make sure your Network adapter is set to DHCP.

Confirm Connectivity

[image: ../../../_images/confirm-connectivity-tethered.png]
Tethered

[image: ../../../_images/confirm-connectivity-wireless.png]
Wireless

Using the Driver Station software, click Diagnostics and confirm that the Enet Link (or Robot Radio led, if operating wirelessly) and Robot leds are green.

Operate the Robot

[image: ../../../_images/run-robot.png]
Click the Operation Tab

	Confirm that battery voltage is displayed

	Communications, Robot Code, and Joysticks indicators are green.

	Put the robot in Teleop Mode

	Click Enable. Move the joysticks and observe how the robot responds.

	Click Disable

Wireless Operation

Before attempting wireless operation, tethered operation should have been confirmed as described in Tethered Operation. Running your benchtop testing program while connected to the Driver Station via WiFi will confirm that the access point is properly configured.

Configuring the Access Point

See the article Programming your radio for details on configuring the robot radio for use as an access point.

After configuring the access point, connect the driver station wirelessly to the robot. The SSID will be your team number (as entered in the Bridge Configuration Utility). If you set a key when using the Bridge Configuration Utility you will need to enter it to connect to the network. Make sure the computer network adapter is set to DHCP (“Obtain an IP address automatically”).

You can now confirm wireless operation using the same steps in Confirm Connectivity and Operate the Robot above.

 FRC LabVIEW Programming

FRC LabVIEW Programming

	Instalando LabVIEW para FRC (LabVIEW apenas)

	Installing the FRC Game Tools

	Creating Robot Programs
	Creating, Building and Loading your Benchtop Test Program

	Tank Drive Tutorial

	Command and Control Tutorial

	LabVIEW Resources
	LabVIEW Resources

	Waiting for Target to Respond - Recovering from bad loops

	Talon SRX CAN

	How To Toggle Between Two Camera Modes

	LabVIEW Examples and Tutorials

	Add an Independent Motor to a Project

	Keyboard Navigation with the roboRIO

	Making a One-Shot Button Press

	Adding Safety Features to Your Robot Code

	How to Use Joystick Buttons to Control Motors or Solenoids

	Local and Global Variables in LabVIEW for FRC

	Using the Compressor in LabVIEW

 Instalando LabVIEW para FRC (LabVIEW apenas)

Instalando LabVIEW para FRC (LabVIEW apenas)

[image: ../../../_images/ni_logo.png]

Note

Esta instalação é para times que programam em LabVIEW ou usam o NI Vision Assistant apenas. Times que utilizam C++ e Java que não estão utilizando estes recursos não precisam instalar a partir do DVD e devem prosseguir para Instalando FRC Game Tools.

O tempo para download e instalação varia muito de acordo com as especificações de conexão do computador, no entanto, note que esse processo envolve o download e a instalação de um arquivo grande e provavelmente levará pelo menos uma hora para ser concluído.

Desinstale as Versões Antigas (Recomendado)

Note

Se você deseja continuar utilizando cRIOs você precisará manter uma instalação do LabVIEW para FRC 2014. A licença para o LabVIEW para FRC 2014 foi estendida. Embora essas versões possam coexistir em um único computador, essa não é uma configuração extensivamente testada.

Antes de instalar a nova versão do LabVIEW, é recomendado remover as versões antigas. A nova versão provavelmente coexistirá com a versão antiga, porém todos os testes foram feitos apenas com a FRC 2020. Certifique-se de fazer um backup de qualquer código do time localizado no diretório “User\LabVIEW Data” antes de desinstalar. Em seguida clique em Iniciar >> Adicionar ou Remover Programas. Localize “National Instruments Software” e selecione “Uninstall”.

[image: ../../../_images/uninstall_old_control_panel.png]

Selecione Componentes para Desinstalar

Na caixa de diálogo exibida, selecione todas as entradas. A maneira mais fácil de fazer isso é desmarcar a caixa de seleção “Products Only” e marcar a caixa de seleção à esquerda de “Name”. Clique em “Remove”. Aguarde o desinstalador concluir e, se solicitado, reinicie o computador.

Warning

Essas instruções assumem que nenhum outro software da National Instruments esteja instalado. Se você tiver outro software da National Instruments instalado, é necessário desmarcar o software que não deve ser desinstalado.

[image: ../../../_images/uninstall_select_components.png]

Getting LabVIEW installer

Either locate and insert the LabVIEW USB Drive or download the LabVIEW 2020 installer from https://www.ni.com/en-us/support/downloads/drivers/download.labview-software-for-frc.html

[image: ../../../_images/offline-installer.png]
If you wish to install on other machines offline, do not click the Download button, click Individual Offline Installers and then click Download, to download the full installer.

Note

This is a large download (~8GB). It is recommended to use a fast internet connection and to use the NI Downloader to allow the download to resume if interrupted.

Installing LabVIEW

National Instruments LabVIEW requires a license. Each season’s license is active until January 31st of the following year (e.g. the license for the 2020 season expires on January 31, 2021)

Teams are permitted to install the software on as many team computers as needed, subject to the restrictions and license terms that accompany the applicable software, and provided that only team members or mentors use the software, and solely for FRC. Rights to use LabVIEW are governed solely by the terms of the license agreements that are shown during the installation of the applicable software.

Welcome

Starting Install

Online Installer

Offline Installer (Windows 10)

Offline Installer (Windows 7, 8, & 8.1)

Run the downloaded exe file to start the install process. Click “Yes” if a Windows Security prompt

Right click on the downloaded iso file and select mount. Run install.exe from the mounted iso. Click “Yes” if a Windows Security prompt

Note

other installed programs may associate with iso files and the mount option may not appear. If that software does not give the option to mount or extract the iso file, then follow the directions in the “Offline Installer (Windows 7, 8, & 8.1)” tab.

[image: ../../../_images/mount-iso.png]

Install 7-Zip (download here [https://www.7-zip.org]). As of the writing of this document, the current released version is 19.00 (2019-02-21).
Right click on the downloaded iso file and select Extract to.

[image: ../../../_images/extract-iso.png]
Run install.exe from the extracted folder. Click “Yes” if a Windows Security prompt Click “Yes” if a Windows Security prompt appears.

NI Package Manager License

[image: ../../../_images/ni-package-license.png]
If you see this screen, click “Next”

Disable Windows Fast Startup

[image: ../../../_images/labview_fast_startup.png]
If you see this screen, click “Next”

NI Package Manager Review

[image: ../../../_images/labview_package_manager_review.png]
If you see this screen, click “Next”

NI Package Manager Installation

[image: ../../../_images/ni-package-install.png]
Installation progress of the NI Package Manager will be tracked in this window

Product List

[image: ../../../_images/labview_product_list.png]
Click “Next”

Additional Packages

[image: ../../../_images/labview_additional_software.png]
Click “Next”

License agreements

[image: ../../../_images/labview_license_1.png]
Check “I accept…” then Click “Next”

[image: ../../../_images/labview_license_2.png]
Check “I accept…” then Click “Next”

Product Information

[image: ../../../_images/labview_product_info.png]
Click “Next”

Start Installation

[image: ../../../_images/labview_start_install.png]
Click “Next”

Overall Progress

[image: ../../../_images/labview_install_progress.png]
Overall installation progress will be tracked in this window

NI Update Service

[image: ../../../_images/ni_update_enable.png]
You will be prompted whether to enable the NI update service. You can choose to not enable the update service.

Warning

It is not recommended to install these updates unless directed by FRC through our usual communication channels (FRC Blog, Team Updates or E-mail Blasts).

NI Activation Wizard

[image: ../../../_images/ni_activation_login.png]
Log into your ni.com account. If you don’t have an account, select ‘Create account’ to create a free account.

[image: ../../../_images/ni_activation_keys.png]
The serial number you entered at the “User Information” screen should appear in all of the text boxes, if it doesn’t, enter it now. Click “Activate”.

Note

If this is the first time activating the 2020 software on this account, you will see the message shown above about a valid license not being found. You can ignore this.

[image: ../../../_images/ni_activation_success.png]
If your products activate successfully, an “Activation Successful” message will appear. If the serial number was incorrect, it will give you a text box and you can re-enter the number and select “Try Again”. The items shown above are not expected to activate. If everything activated successfully, click “Next”.

[image: ../../../_images/ni_activation_finish.png]
Click “Close”.

Restart

[image: ../../../_images/labview_restart.png]
Select “Reboot Now” after closing any open programs.

 Installing the FRC Game Tools

Installing the FRC Game Tools

The FRC Game Tools contains the following software components:
LabVIEW Update, FRC Driver Station, and FRC Utilities. The
LabVIEW runtime components required for the Driver Station and
Utilities are included in this package. No components from the
LabVIEW Software for FRC package are required for running either the Driver
Station or Utilities.

Note

The Driver Station will only work on Windows 7, Windows 8,Windows 8.1, and Windows 10. It will not work on Windows XP.

Uninstall Old Versions (Recommended)

Warning

LabVIEW teams have already completed this step, do not repeat it.

Note

It is only necessary to uninstall previous versions when installing a new year’s tools. For example, uninstall the 2019 tools before installing the 2020 tools. It is not necessary to uninstall before upgrading to a new update of the 2020 game tools.

Before installing the new version of the FRC Game Tools it is recommended to remove any old versions. The new version will likely co-exist with the old version (note that the DS will overwrite old versions), but all testing has been done with FRC 2020 only. Then click Start >> Add or Remove Programs. Locate the entry labeled “National Instruments Software”, and select Uninstall.

[image: ../../../_images/uninstall_old_control_panel.png]

Select Components to Uninstall

In the dialog box that appears, select all entries. The easiest way to do this is to de-select the “Products Only” check-box and select the check-box to the left of “Name”. Click Remove. Wait for the uninstaller to complete and reboot if prompted.

[image: ../../../_images/uninstall_select_components.png]

Downloading the Update

Download the update from
https://www.ni.com/en-us/support/downloads/drivers/download.frc-game-tools.html

[image: ../../../_images/offline-installer.png]
If you wish to install on other machines offline, do not click the Download button, click Individual Offline Installers and then click Download, to download the full installer.

.NET Framework 4.6.2

The Game Tools installer may prompt that .NET Framework 4.6.2 needs to be
updated or installed. Follow prompts on-screen to complete the
installation, including rebooting if requested. Then resume the
installation of the FRC Game Tools, restarting the installer if
necessary.

Welcome

Starting Install

Online Installer

Offline Installer (Windows 10)

Offline Installer (Windows 7, 8, & 8.1)

Run the downloaded exe file to start the install process. Click “Yes” if a Windows Security prompt

Right click on the downloaded iso file and select mount. Run install.exe from the mounted iso. Click “Yes” if a Windows Security prompt

[image: ../../../_images/mount-iso.png]

Note

other installed programs may associate with iso files and the mount option may not appear. If that software does not give the option to mount or extract the iso file, then follow the directions in the “Offline Installer (Windows 7, 8, & 8.1)” tab.

Install 7-Zip (download here [https://www.7-zip.org]). As of the writing of this document, the current released version is 19.00 (2019-02-21).
Right click on the downloaded iso file and select Extract to.

[image: ../../../_images/extract-iso.png]
Run install.exe from the extracted folder. Click “Yes” if a Windows Security prompt Click “Yes” if a Windows Security prompt appears.

NI Package Manager License

[image: ../../../_images/ni-package-license.png]
If you see this screen, click “Next”

Disable Windows Fast Startup

[image: ../../../_images/labview_fast_startup.png]
If you see this screen, click “Next”

NI Package Manager Review

[image: ../../../_images/labview_package_manager_review.png]
If you see this screen, click “Next”

NI Package Manager Installation

[image: ../../../_images/ni-package-install.png]
Installation progress of the NI Package Manager will be tracked in this window

Product List

Additional Software

[image: Additional Software]

If you see this screen, click “Next”

License Agreements

[image: License Agreements]

Select “I accept…” then click “Next”

License Agreements Page 2

[image: License Agreements Page 2]

If you see this screen, select “I accept…” then click “Next”

Review Summary

[image: Review Summary]

Click Next

Detail Progress

[image: Detail Progress]
Detail Progress

Installation Summary

[image: Installation Summary]

click Close

NI Activation Wizard

[image: NI Activation Wizard]

Log into your ni.com account. If you don’t have
an account, select ‘Create account’ to create a free account.

NI Activation Wizard (2)

[image: NI Activation Wizard 2]

Enter the serial number. Click “Activate”. Note: If this is the first time
activating this year’s software on this account, you will see the message
shown above about a valid license not being found. You can ignore this.

NI Activation Wizard (3)

[image: NI Activation Wizard 3]

If your products activate successfully, an
“Activation Successful” message will appear. If the serial number was
incorrect, it will give you a text box and you can re-enter the number
and select “Try Again”. If everything activated successfully, click
“Next”.

NI Activation Wizard (4)

[image: NI Activation Wizard 4]

Click “Close”.

NI Update Service

[image: ../../../_images/ni_update_enable.png]
You will be prompted whether to enable the NI update service. You can choose to not enable the update service.

Reboot to Complete Installation

[image: ../../../_images/labview_restart.png]
If prompted, Select “Reboot Now” after closing any open programs.

 Creating Robot Programs

Creating Robot Programs

	Creating, Building and Loading your Benchtop Test Program

	Tank Drive Tutorial

	Command and Control Tutorial

 Creating, Building and Loading your Benchtop Test Program

Creating, Building and Loading your Benchtop Test Program

[image: ../../../../_images/ni-logo1.png]

Note

This document covers how to create, build and load an FRC LabVIEW program onto a roboRIO. Before beginning, make sure that you have installed LabVIEW for FRC and the FRC Driver Station and that you have configured and imaged your roboRIO as described in the Getting Started with the Control System section.

Creating a Project

Launch LabVIEW and click the FRC roboRIO Robot Project link in the Projects window to display the Create New FRC Robot Project dialog box.

[image: ../../../../_images/creating-a-project.png]

Configuring Project

Fill in the Create New FRC Project Dialog:

	Pick a name for your project

	Select a folder to place the project in.

	Enter your team number

	Select a project type. If unsure, select Arcade Drive - roboRIO.

	Click Finish

[image: ../../../../_images/configuring-project.png]

Running the Program

Note

Note that a program deployed in this manner will not remain on the roboRIO after a power cycle. To deploy a program to run every time the roboRIO starts follow the next step, Deploying the program.

	In the Project Explorer window, double-click the Robot Main.vi item to open the Robot Main VI.

	Click the Run button (White Arrow on the top ribbon) of the Robot Main VI to deploy the VI to the roboRIO. LabVIEW deploys the VI, all items required by the VI, and the target settings to memory on the roboRIO. If prompted to save any VIs, click Save on all prompts.

	Using the Driver Station software, put the robot in Teleop Mode. For more information on configuring and using the Driver Station software, see the FRC Driver Station Software article.

	Click Enable.

	Move the joysticks and observe how the robot responds.

	Click the Abort button of the Robot Main VI. Notice that the VI stops. When you deploy a program with the Run button, the program runs on the roboRIO, but you can manipulate the front panel objects of the program from the host computer.

[image: ../../../../_images/running-the-program.png]

Deploying the Program

To run in the competition, you will need to deploy a program to your roboRIO. This allows the program to survive across reboots of the controller, but doesn’t allow the same debugging features (front panel, probes, highlight execution) as running from the front panel. To deploy your program:

	In the Project Explorer, click the + next to Build Specifications to expand it.

	Right-click on FRC Robot Boot-up Deployment and select Build. Wait for the build to complete.

	Right-click again on FRC Robot Boot-Up Deployment and select Run as Startup. If you receive a conflict dialog, click OK. This dialog simply indicates that there is currently a program on the roboRIO which will be terminated/replaced.

	Either check the box to close the deployment window on successful completion or click the close button when the deployment completes.

	The roboRIO will automatically start running the deployed code within a few seconds of the dialog closing.

[image: ../../../../_images/deploying-the-program.png]

 Tank Drive Tutorial

Tank Drive Tutorial

[image: ../../../../_images/ni-logo2.png]
Question: How do I get my robot to drive with two joysticks using tank drive?

Solution: There are four components to consider when setting up tank drive for your robot. The first thing you will want to do is make sure the tank drive.vi is used instead of the arcade drive.vi or whichever drive VI you were utilizing previously. The second item to consider is how you want your joysticks to map to the direction you want to drive. In tank drive, the left joystick is used to control the left motors and the right joystick is used to control the right motors. For example, if you want to make your robot turn right by pushing up on the left joystick and down on the right joystick you will need to set your joystick’s accordingly in LabVIEW (this is shown in more detail below). Next, you will want to confirm the PWM lines that you are wired into, are the same ones your joysticks will be controlling. Lastly, make sure your motor controllers match the motor controllers specified in LabVIEW. The steps below will discuss these ideas in more detail:

	Open LabVIEW and double click FRC roboRIO Project.

[image: ../../../../_images/roboRIO-project.png]

	Give your project a name, add your team number, and select Arcade Drive Robot roboRIO. You can select another option, however, this tutorial will discuss how to setup tank drive for this project.

	In the Project Explorer window, open up the Robot Main.vi.

	Push Ctrl + E to see the block diagram. It should look like the following image:

[image: ../../../../_images/block-diogram.png]

	Double click the “Teleop” vi inside of the Teleop Enabled case structure. Look at its block diagram. You will want to make two changes here:

	Replace Arcade Drive with the tank drive.vi. This can be found by right clicking on the block diagram >> WPI Robotics Library >> Robot Drive >> and clicking the Tank Drive VI.

	Find the Index Array function that is after the Get Values.vi. You will need to create two numeric constants and wire each into one of the index inputs. You can determine what the values of each index should be by looking at the USB Devices tab in the FRC Driver Station. Move the two joysticks to determine which number (index) they are tied to. You will likely want to use the Y-axis index for each joystick. This is because it is intuitive to push up on the joystick when you want the motors to go forward, and down when you when them to go in reverse. If you select the X-axis index for each, then you will have to move the joystick left or right (x-axis directions) to get the robot motors to move. In my setup, I’ve selected index 1 for my left motors Y-axis control and index 5 as the right motors Y-axis control. You can see the adjustments in LabVIEW in the following image:

[image: ../../../../_images/block-diogram-2.png]

	Next you will want to go back to your “Robot Main.vi” and double click on the “Begin.vi.”

	The first thing to confirm in this VI is that your left and right motors are connected to the same PWM lines in LabVIEW as they are on your PDP (Power Distribution Panel).

	The second thing to confirm in this VI is that the “Open 2 Motor.vi” has the correct motor controller selected (Talon, Jaguar, Victor, etc.).

For example, I am using Jaguar motor controllers and my motors are wired into PWM 8 and 9. The image below shows the changes I need to make:

[image: ../../../../_images/block-diogram-3.png]

	Save all of the Vis that you have made adjustments to and you are now able to drive a robot with tank drive!

 Command and Control Tutorial

Command and Control Tutorial

[image: ../../../../_images/ni-logo.png]

Introduction

Command and Control is a new LabVIEW template added for the 2016 season which organizes robot code into commands and controllers for a collection of robot-specific subsystems. Each subsystem has an independent control loop or state machine running at the appropriate rate for the mechanism and high-level commands that update desired operations and set points. This makes it very easy for autonomous code to build synchronous sequences of commands. Meanwhile, TeleOp benefits because it can use the same commands without needing to wait for completion, allowing for easy cancellation and initiation of new commands according to the drive team input. Each subsystem has a panel displaying its sensor and control values over time, and command tracing to aid in debugging.

What is Command and Control?

Command and Control recognizes that FRC robots tend to be built up of relatively independent mechanisms such as Drive, Shooter, Arm, etc. Each of these is referred to as a subsystem and needs code that will coordinate the various sensors and actuators of the subsystem in order to complete requested commands, or actions, such as “Close Gripper” or “Lower Arm”. One of the key principles of this framework is that subsystems will each have an independent controller loop that is solely responsible for updating motors and other actuators. Code outside of the subsystem controller can issue commands which may change the robot’s output, but should not directly change any outputs. The difference is very subtle but this means that outputs can only possibly be updated from one location in the project. This speeds up debugging a robot behaving unexpectedly by giving you the ability to look through a list of commands sent to the subsystem rather than searching your project for where an output may have been modified. It also becomes easier to add an additional sensor, change gearing, or disable a mechanism without needing to modify code outside of the controller.

Game code, primarily consisting of Autonomous and TeleOp, will typically need to update set points and react to the state of certain mechanisms. For Autonomous, it is very common to define the robot’s operation as a sequence of operations – drive here, pick that up, carry it there, shoot it, etc. Commands can be wired sequentially with additional logic to quickly build complex routines. For teleOp, the same commands can execute asynchronously, allowing the robot to always process the latest driver inputs, and if implemented properly, new commands will interrupt, allowing the drive team to quickly respond to field conditions while also taking advantage of automated commands and command sequences.

Why should I use Command and Control?

Command and Control adds functionality to the existing LabVIEW project templates, allowing code to scale better with more sophisticated robots and robot code. Subsystems are used to abstract the details of the implementation, and game code is built from sequences of high level command VIs. The commands themselves are VIs that can update set points, perform numerical scaling/mapping between engineering units and mechanism units, and offer synchronization options. If physical changes are made to the robot, such as changing a gearing ratio, changes can be made to just a few command Vis to reflect this change across the entire code base.

I/O encapsulation makes for more predictable operation and quicker debugging when resource conflicts do occur. Because each command is a VI, you are able to single step through commands or use the built in Trace functionality to view a list of all commands sent to each subsystem.The framework uses asynchronous notification and consistent data propagation making it easy to program a sequence of commands or add in simple logic to determine the correct command to run.

Part 1: Project Explorer

The Project Explorer provides organization for all of the Vis and files you will use for your robot system. Below is a description of the major components in the Project Explorer to help with the expansion of our system. The most frequently used items have been bolded.

[image: ../../../../_images/project-explorer-1.png]

	My Computer
	The items that define operation on the computer that the project was loaded on. For a robot project, this is used as a simulation target and is populated with simulation files.

	Sim Support Files
	The folder containing 3D CAD models and description files for the simulated robot.

	Robot Simulation Readme.html
	Documents the PWM channels and robot info you will need in order to write robot code that matches the wiring of the simulated robot.

	Dependencies
	Shows the files used by the simulated robot’s code. This will populate when you designate the code for the simulated robot target.

	Build Specifications
	This will contain the files that define how to build and deploy code for the simulated robot target.

	Target (roboRIO-TEAM-FRC.local)
	The items that define operation on the roboRIO located at (address).

	Drive
	The subsystem implementation and commands for the robot drive base. This serves as a custom replacement for the WPILib RobotDrive VIs.

	Framework
	VIs used for robot code that is not part of a subsystem that are not used very often.

	Begin
	Called once when robot code first starts. This is useful for initialization code that doesn’t belong to a particular subsystem.

	Disabled
	Called once for each disabled packet and can be used to debug sensors when you don’t want the robot to move.

	Finish
	During development, this may be called when robot code finishes. Not called on abort or when power is turned off.

	Periodic Tasks
	A good place for ad hoc periodic loops for debugging or monitoring

	Robot Global Data
	Useful for sharing robot information that doesn’t belong to a subsystem.

	Support Code
	Debugging and code development aids.

	Vision
	Subsystem and commands for the camera and image processing.

	Robot Main.vi
	Top level VI that you will run while developing code.

	Autonomous.vi
	VI that runs during autonomous period.

	Teleop.vi
	VI that is called for each TeleOp packet.

	Test.vi
	VI that runs when driver station is in test mode.

	SubSystems.vi
	VI that contains and starts all subsystems.

	Dependencies
	Shows the files used by the robot code.

	Build Specifications
	Used to build and run the code as a startup application once code works correctly.

[image: ../../../../_images/project-explorer-2.jpg]

Drive Subsystem Project Explorer

[image: ../../../../_images/drive-subsystem-project-explorer.jpg]

	Commands:
	This folder contains the command VIs that request the controller carry out an operation. It also contains templates for creating additional drive commands.

Note

After creating a new command, you may need to edit Drive Setpoints.ctl to add or update fields that controller uses to define the new operation. You also need to go into the Drive Controller.vi and modify the case structure to add a case for every value.

Implementation

These are the VIs and Controls used to build the subsystem.

	Infrastructure VIs
	
	Drive Check for New Command: It is called each iteration of the controller loop. It checks for new commands, updates timing data, and upon completion notifies a waiting command.

	Drive Command Helper.vi: Commands call this VI to notify the controller that a new command has been issued.

	Drive Controller Initialization.vi: It allocates the notifier and combines the timing, default command, and other information into a single data wire.

	Drive Controller.vi: This VI contains the control/state machine loop. The panel may also contain displays useful for debugging.

	Drive Operation.ctl: This typedef defines the operational modes of the controller. Many commands can share an operation.

	Drive Setpoint.ctl: It contains the data fields used by all operating modes of the Drive subsystem.

	Drive Published Globals.vi: A useful place for publishing global information about the drive subsystem.

Part 2: Initializing the Drive Subsystem

There are green comments on the controller’s block diagram that point out key areas that you will want to know how to edit.

The area to the left of the control loop will execute once when the subsystem starts up. This is where you will typically allocate and initialize all I/O and state data. You may publish the I/O refnums, or you may register them for Test Mode Only to keep them private so that other code cannot update motors without using a command.

[image: ../../../../_images/step-1.jpg]

Note

Initializing the resources for each subsystem in their respective Controller.vi rather than in Begin.vi improves I/O encapsulation, reducing potential resource conflicts and simplifies debugging.

[image: ../../../../_images/step-2.jpg]
Part of the initialization is to select the default operation and set point values when no other operation is being processed.

[image: ../../../../_images/step-3.jpg]
Inside the control loop is a case statement where operations are actually implemented. Set point values, iteration delay, iteration count, and sensors can all have influence on how the subsystem operates. This case structure has a value for each operation state of the subsystem.

[image: ../../../../_images/step-4.jpg]
Each iteration of the controller loop will optionally update the Trace VI. The framework already incorporates the subsystem name, operation, and description, and you may find it helpful to format additional set point values into the trace information. Open the Trace VI and click Enable while the robot code is running to current setpoints and commands sent to each subsystem.

The primary goal of the controller is to update actuators for the subsystem. This can occur within the case structure, but many times, it is beneficial to do it downstream of the structure to ensure that values are always updated with the correct value and in only one location in the code.

[image: ../../../../_images/step-5.jpg]

Part 3: Drive Subsystem Shipped Commands

There are 3 shipped example commands for each new subsystem:

Drive For Time.vi

[image: ../../../../_images/drive-for-time.jpg]
This VI sets the motors to run for a given number of seconds. It optionally synchronizes with the completion of the command.

The Drive for Time case will operate the motors at the set point until the timer elapses or a new command is issued. If the motors have the safety timeout enabled, it is necessary to update the motors at least once every 100ms. This is why the code waits for the smaller of the remaining time and 50ms.

[image: ../../../../_images/drive-for-time-diogram.jpg]

Drive Immediate.vi

[image: ../../../../_images/drive-immediate.jpg]
Gets the desired left and right speeds for the motors and will set the motors immediately to those set points.

The Immediate case updates the motors to the set point defined by the command. The command is not considered finished since you want the motors to maintain this value until a new command comes in or until a timeout value. The timeout is useful anytime a command includes a dead band. Small values will not be requested if smaller than the dead band, and will result in growling or creeping unless the command times out.

[image: ../../../../_images/drive-immediate-diogram.jpg]

Stop Driving.vi

Zero the drive motors, making the robot stationary.

The Reserve command turns off the motors and waits for a new command. When used with a named command sequence, reserve identifies that the drive subsystem is part of a sequence, even if not currently moving the robot. This helps to arbitrate subsystem resource between simultaneously running commands.

[image: ../../../../_images/stop-driving-diogram.jpg]

Part 4: Creating New Commands

The Command and Control framework allows users to easily create new commands for a subsystem. To Create a new command open the subsystem folder/Commands In the project explorer window, choose one of the VI Templates to use as the starting point of your new command, right click, and select New From Template.

	Immediate: This VI notifies the subsystem about the new setpoint.

	Immediate with deadband: This VI compares the input value to the deadband and optionally notifies the subsystem about the new setpoint. This is very useful when joystick continuous values are being used.

	With duration: This VI notifies the subsystem to perform this command for the given duration, and then return to the default state. Synchronization determines whether this VI Starts the operation and returns immediately, or waits for the operation to complete. The first option is commonly used for TeleOp, and the second for Autonomous sequencing.

In this example we will add the new command “Drive for Distance”.

[image: ../../../../_images/new-vi.jpg]
First, save the new VI with a descriptive name such as “Drive for Distance”. Next, determine whether the new command needs a new value added the Drive Operations enum typedef. The initial project code already has an enum value of Drive for Distance, but the following image shows how you would add one if needed.

[image: ../../../../_images/edit-items.jpg]
If a command needs additional information to execute, add it to the setpoints control. By default, the Drive subsystem has fields for the Left Setpoint, Right Setpoint, and Duration along with the operation to be executed. The Drive for Distance command could reuse Duration as distance, but let’s go ahead and add a numeric control to the Drive Setpoints.ctl called Distance (feet).

[image: ../../../../_images/add-distance.jpg]
Once that we have all of the fields needed to specify our command, we can modify the newly created Drive for Distance.vi. As shown below, select Drive for Distance from the enum’s drop down menu and add a VI parameters to specify distance, speeds, etc. If the units do not match, the command VI is a great place to map between units.

[image: ../../../../_images/add-vi-parameters.jpg]
Next, add code to the Drive Controller to define what happens when the Drive for Distance command executes. Right click on the Case Structure and Duplicate or Add Case for Every Value. This will create a new “Drive for Distance” case.

[image: ../../../../_images/add-case.jpg]
In order to access new setpoint fields, grow the “Access Cmd setpoints” unbundle node. Open your encoder(s) on the outside, to the left of the loop. In the new diagram of the case structure, we added a call to reset the encoder on the first loop iteration and read it otherwise. There is also some simple code that compares encoder values and updates the motor power. If new controls are added to the setpoints cluster, you should also consider adding them to the Trace. The necessary changes are shown in the image below.

[image: ../../../../_images/add-encoder-logic.jpg]

Part 5: Creating a Subsystem

In order to create a new subsystem, right click on the roboRIO target and select New» Subsystem. In the pop up dialog box, enter the name of the subsystem, list the operational modes, and specify the color of the icon.

[image: ../../../../_images/new-subsystem.jpg]
When you click OK, the subsystem folder will be generated and added to the project disk folder and tree. It will contain a base implementation of the VIs and controls that make up a subsystem. A call to the new controller will be inserted into the Subsystems VI. The controller VI will open, ready for you to add I/O and implement state machine or control code. Generated VI icons will use the color and name provided in the dialog. The generated code will use typedefs for set point fields and operations.

[image: ../../../../_images/new-subsystem-front-panel.jpg]
Below is the block diagram of the newly created subsystem. This code will be generated automatically when you create the subsystem.

[image: ../../../../_images/new-subsystem-diogram.jpg]

 LabVIEW Resources

LabVIEW Resources

	LabVIEW Resources

	Waiting for Target to Respond - Recovering from bad loops

	Talon SRX CAN

	How To Toggle Between Two Camera Modes

	LabVIEW Examples and Tutorials

	Add an Independent Motor to a Project

	Keyboard Navigation with the roboRIO

	Making a One-Shot Button Press

	Adding Safety Features to Your Robot Code

	How to Use Joystick Buttons to Control Motors or Solenoids

	Local and Global Variables in LabVIEW for FRC

	Using the Compressor in LabVIEW

 LabVIEW Resources

LabVIEW Resources

[image: ../../../../_images/ni-logo3.png]

Note

To learn more about programming in LabVIEW and specifically programming FRC robots in LabVIEW, check out the following resources.

LabVIEW Basics

National Instruments provides a combination of videos [https://www.ni.com/academic/students/learn-labview/] and traditional text/picture tutorials on the basics of LabVIEW [https://www.ni.com/getting-started/labview-basics/]. These tutorials can help you get acquainted with the LabVIEW environment and the basics of the graphical, dataflow programing model used in LabVIEW.

NI FRC Tutorials

National Instruments also hosts many FRC specific tutorials and presentations ranging from basic to advanced [https://forums.ni.com/t5/FIRST-Robotics-Competition/Archived-2015-FRC-LabVIEW-Additional-Resources/ta-p/3528790?profile.language=en]. For an in-depth single resource check out the FRC Basic and Advanced Training Classes linked near the bottom of the page.

Installed Tutorials and Examples

There are also tutorials and examples for all sorts of tasks and components provided as part of your LabVIEW installation. To access the tutorials, from the LabVIEW Splash screen (the screen that appears when the program is first launched) click on the Tutorials tab on the left side. Note that the tutorials are all in one document, so once it is open you are free to browse to other tutorials without returning to the splash screen.

To access the examples either click the Support tab, then Find FRC Examples or anytime you’re working on a program open the Help menu, select Find Examples and open the FRC Robotics folder.

 Waiting for Target to Respond - Recovering from bad loops

Waiting for Target to Respond - Recovering from bad loops

[image: ../../../../_images/ni-logo3.png]

Note

If you download LabVIEW code which contains an unconstrained loop (a loop with no delay) it is possible to get the roboRIO into a state where LabVIEW is unable to connect to download new code. This document explains the process required to load new, fixed, code to recover from this state.waiting-for-target-to-respond/

The Symptom

[image: ../../../../_images/symptom.png]
The primary symptom of this issue is attempts to download new robot code hang at the “Waiting for the target (Target) to respond” step as shown above. Note that there are other possible causes of this symptom (such as switching from a C++Java program to LabVIEW program) but the steps described here should resolve most or all of them.

Click Cancel to close the download dialog.

The Problem

[image: ../../../../_images/problem-1.png]
One common source of this issue is unconstrained loops in your LabVIEW code. An unconstrained loop is a loop which does not contain any delay element (such as the one on the left). If you are unsure where to begin looking, Disabled.VI, Periodic Tasks.VI and Vision Processing.VI are the common locations for this type of loop. To fix the issue with the code, add a delay element such as the Wait (ms) VI from the Timing palette, found in the right loop.

Set No App

[image: ../../../../_images/set-no-app.png]
Using the roboRIO webserver (see the article roboRIO Webdashboard for more details). Check the box to “Disable RT Startup App”.

Reboot

Reboot the roboRIO, either using the Reset button on the device or by click Restart in the top right corner of the webpage.

Clear No App

[image: ../../../../_images/clar-no-app.png]
Using the roboRIO webserver (see the article roboRIO Webdashboard for more details). Uncheck the box to “Disable RT Startup App”.

Load LabVIEW Code

Load LabVIEW code (either using the Run button or Run as Startup). Make sure to set LabVIEW code to Run as Startup before rebooting the roboRIO or you will need to follow the instructions above again.

 Talon SRX CAN

Talon SRX CAN

The Talon SRX motor controller is a CAN-enabled “smart motor controller” from Cross The Road Electronics/VEX Robotics. The Talon SRX can be controlled over the CAN bus or PWM interface. When using the CAN bus control, this device can take inputs from limit switches and potentiometers, encoders, or similar sensors in order to perform advanced control such as limiting or PID(F) closed loop control on the device.

Extensive documentation about programming the Talon SRX in all three FRC languages can be found in the Talon SRX Software Reference Manual on CTRE’s Talon SRX product page [https://www.ctr-electronics.com/talon-srx.html#product_tabs_technical_resources].

Note

CAN Talon SRX has been removed from WPILib. See this blog [https://www.firstinspires.org/robotics/frc/blog/2017-control-system-update] for more info and find the CTRE Toolsuite installer here [https://www.ctr-electronics.com/control-system/hro.html#product_tabs_technical_resources]

 How To Toggle Between Two Camera Modes

How To Toggle Between Two Camera Modes

[image: ../../../../_images/ni-logo3.png]
This code shows how to use a button to toggle between two distinct camera modes. The code consists of four stages.

In the first stage, the value of a button on the joystick is read.

Next, the current reading is compared to the previous reading using a Feedback Node and some Boolean arithmetic. Together, these ensure that the camera mode is only toggled when the button is initially pressed rather than toggling back and forth multiple times while the button is held down.

After that, the camera mode is toggled by masking the result of the second stage over the current camera mode value. This is called bit masking and by doing it with the XOR function the code will toggle the camera mode when the second stage returns true and do nothing otherwise.

Finally, you can insert the code for each camera mode in the case structure at the end. Each time the code is run, this section will run the code for the current camera mode.

[image: ../../../../_images/toggle-between-two-camera-modes.png]

 LabVIEW Examples and Tutorials

LabVIEW Examples and Tutorials

[image: ../../../../_images/ni-logo3.png]

Popular Tutorials

Autonomous Timed Movement Tutorial [https://forums.ni.com/t5/FIRST-Robotics-Competition/FRC-2016-Autonomous-Timed-Movement-Tutorial/ta-p/3535608?profile.language=en]

	Move your robot autonomously based on different time intervals

	See more on Autonomous Movement [https://forums.ni.com/t5/FIRST-Robotics-Competition/Autonomous-Timed-Movement-Tutorial/ta-p/3732667?profile.language=en]

Basic Motor Control Tutorial [https://forums.ni.com/t5/FIRST-Robotics-Competition/FRC-2014-Basic-Motor-Control-Tutorial/ta-p/3504064?profile.language=en]

	Setup your roboRIO motor hardware and software

	Learn to setup the FRC Control System and FRC Robot Project

	See more on Motor Control [https://forums.ni.com/t5/FIRST-Robotics-Competition/Basic-Motor-Control-Tutorial/ta-p/3733426?profile.language=en]

Image Processing Tutorial [https://forums.ni.com/t5/FIRST-Robotics-Competition/FRC-2015-Image-Processing-Tutorial/ta-p/3490518?profile.language=en]

	Learn basic Image Processing techniques and how to use NI Vision Assistant

	See more on Cameras and Image Processing [https://forums.ni.com/t5/FIRST-Robotics-Competition/Image-Processing-in-LabVIEW-for-FRC/ta-p/3732677?profile.language=en]

PID Control Tutorial [https://forums.ni.com/t5/FIRST-Robotics-Competition/FRC-2015-PID-Tutorial/ta-p/3535805?profile.language=en]

	What is PID Control and how can I implement it?

Command and Control Tutorial [https://forums.ni.com/t5/FIRST-Robotics-Competition/Command-and-Control-Tutorial/ta-p/3534946?profile.language=en]

	What is Command and Control?

	How do I implement it?

Driver Station Tutorial [https://forums.ni.com/t5/FIRST-Robotics-Competition/Archived-FRC-2015-Driver-Station-Tutorial/ta-p/3535650?profile.language=en]

	Get to know the FRC Driver Station

Test Mode Tutorial [https://forums.ni.com/t5/FIRST-Robotics-Competition/FRC-2015-Test-Mode-Tutorial/ta-p/3535797?profile.language=en]

	Learn to setup and use Test Mode

Looking for more examples and discussions? Search through more documents or post your own discussion, example code, or tutorial by clicking here! [https://forums.ni.com/t5/FIRST-Robotics-Competition/tkb-p/3019?profile.language=en] Don’t forget to mark your posts with a tag!

 Add an Independent Motor to a Project

Add an Independent Motor to a Project

[image: ../../../../_images/ni-logo3.png]
Once your drive that controls the wheels is all set, you might need to add an additional motor to control something completely independent of the wheels, such as an arm. Since this motor will not be part of your tank, arcade, or mecanum drive, you’ll definitely want independent control of it.

These VI Snippets show how to set up a single motor in a project that may already contain a multi-motor drive. If you see the HAND>ARROW>LABVIEW symbol, just drag the image into your block diagram, and voila: code! Ok, here’s how you do it.

FIRST, create a motor reference in the Begin.vi, using the Motor Control Open VI and Motor Control Refnum Registry Set VI. These can be found by right-clicking in the block diagram and going to WPI Robotics Library>>RobotDrive>>Motor Control. Choose your PWM line and name your motor. I named mine “Lift Motor” and connected it to PWM 7. (I also included and enabled the Motor Control Safety Config VI, which automatically turns off the motor if it loses connection.)

[image: ../../../../_images/1.png]
Now, reference your motor (the name has to be exact) in the Teleop.vi using the Motor Control Refnum Registry Get VI and tell it what to do with the Motor Control Set Output VI. These are in the same place as the above VIs.

[image: ../../../../_images/2.png]
For example, the next snippet tells the Lift Motor to move forward if button 4 is pressed on Joystick 0 and to remain motionless otherwise. For me, button 4 is the left bumper on my Xbox style controller (“Joystick 0”). For much more in-depth joystick button options, check out How to Use Joystick Buttons to Control Motors or Solenoids.

[image: ../../../../_images/3.png]
Finally, we need to close the references in the Finish.vi (just like we do with the drive and joystick), using the Motor Control Refnum Registry Get VI and Motor Control Close VI. While this picture shows the Close VI in a flat sequence structure by itself, we really want all of the Close VIs in the same frame. You can just put these two VIs below the other Get VIs and Close VIs (for the joystick and drive).

[image: ../../../../_images/4.png]
I hope this helps you program the best robot ever! Good luck!

 Keyboard Navigation with the roboRIO

Keyboard Navigation with the roboRIO

[image: ../../../../_images/ni-logo3.png]
This example provides some suggestions for controlling the robot using keyboard navigation in place of a joystick or other controller. In this case, we use the A, W, S, and D keys to control two drive motors in a tank drive configuration.

The first VI Snippet is the code that will need to be included in the Dashboard Main VI. You can insert this code into the True case of Loop 1. The code opens a connection to the keyboard before the loop begins, and on each iteration it reads the pressed key. This information is converted to a string, which is then passed to the Teleop VI in the robot project. When Loop 1 stops running, the connection to the keyboard is closed.

[image: ../../../../_images/keyboard-navigation-with-the-roborio.png]
The second VI Snippet is code that should be included in the Teleop VI. This reads the string value from the Dashboard that indicates which key was pressed. A Case Structure then determines which values should be written to the left and right motors, depending on the key. In this case, W is forward, A is left, D is right, and S is reverse. Each case in this example runs the motors at half speed. You can keep this the same in your code, change the values, or add additional code to allow the driver to adjust the speed, so you can drive fast or slow as necessary. Once the motor values are selected, they are written to the drive motors, and motor values are published to the dashboard.

 Making a One-Shot Button Press

Making a One-Shot Button Press

[image: ../../../../_images/ni-logo3.png]
When using the Joystick Get Values function, pushing a joystick button will cause the button to read TRUE until the button is released. This means that you will most likely read multiple TRUE values for each press. What if you want to read only one TRUE value each time the button is pressed? This is often called a “One-Shot Button”. The following tutorial will show you how to create a subVI that you can drop into your Teleop.vi to do this.

First, create a new VI in the Support Code folder of your project.

[image: ../../../../_images/12.png]
Now on the block diagram of the new VI, drop in the following code snippet.

[image: ../../../../_images/23.png]
This code uses a function called the Feedback Node. We have wired the current value of the button into the left side of the feedback node. The wire coming out of the arrow of the feedback node represents the previous value of the button. If the arrow on your feedback node is going the opposite direction as shown here, right click to find the option to reverse the direction.

When a button is pressed, the value of the button goes from FALSE to TRUE. We want the output of this VI to be TRUE only when the current value of the button is TRUE, and the previous value of the button is FALSE.

Next we need to connect the boolean control and indicator to the inputs and outputs of the VI. To do this, first click the block on the connector pane, then click the button to connect the two (see the diagram below). Repeat this for the indicator.

[image: ../../../../_images/33.png]
Next, we need to change the properties of this VI so that we can use multiples of this VI in our TeleOp.vi. Right click the VI Icon and go to VI Properties. Then select the category “Execution” and select “Preallocated clone reentrant execution”.

[image: ../../../../_images/42.png]
[image: ../../../../_images/51.png]
Lastly, we should change the VI Icon to be more descriptive of the VI’s function. Right click the Icon and go to Edit Icon. Create a new Icon.

[image: ../../../../_images/61.png]
Finally, save the VI with a descriptive name. You can now drag and drop this VI from the Support Files folder into your TeleOp.vi. Here is a copy of the completed VI: Button_Press.vi

Here’s an example of how you could use this VI.

[image: ../../../../_images/7.png]

 Adding Safety Features to Your Robot Code

Adding Safety Features to Your Robot Code

[image: ../../../../_images/ni-logo3.png]
A common problem with complex projects is making sure that all of your code is executing when you expect it to. Problems can arise when tasks with high priority, long execution times, or frequent calls hog processing power on the roboRIO. This leads to what is known as “starvation” for the tasks that are not able to execute due to the processor being busy. In most cases this will simply slow the reaction time to your input from the joysticks and other devices. However, this can also cause the drive motors of your robot to stay on long after you try to stop them. To avoid any robotic catastrophes from this, you can implement safety features that check for task input starvation and automatically shut down potentially harmful operations.

There are built-in functions for the motors that allow easy implementation of safety checks. These functions are:

	Robot Drive Safety Configuration

	Motor Drive Safety Configuration

	Relay Safety Configuration

	PWM Safety Configuration

	Solenoid Safety Configuration

	Robot Drive Delay and Update Safety

In all of the Safety Configuration functions, you can enable and disable the safety checks while your programming is running and configure what timeout you think is appropriate. The functions keep a cache of all devices that have the safety enabled and will check if any of them have exceeded their time limit. If any has, all devices in the cache will be disabled and the robot will come to an immediate stop or have its relay/PWM/solenoid outputs turned off. The code below demonstrates how to use the Drive Safety Configuration functions to set a maximum time limit that the motors will receive no input before being shut off.

[image: ../../../../_images/adding-safety-features-to-your-robot-code.png]
To test the safety shut-off, try adding a Wait function to the loop that is longer than your timeout!

The final function that relates to implementing safety checks–Robot Drive Delay and Update Safety–allows you to put the roboRIO in Autonomous Mode without exceeding the time limit. It will maintain the current motor output without making costly calls to the Drive Output functions, and will also make sure that the safety checks are regularly updated so that the motors will not suddenly stop.

Overall, it is highly recommended that some sort of safety check is implemented in your project to make sure that your robot is not unintentionally left in a dangerous state!

 How to Use Joystick Buttons to Control Motors or Solenoids

How to Use Joystick Buttons to Control Motors or Solenoids

[image: ../../../../_images/ni-logo3.png]
As we all get our drive systems working, we are moving on to connecting our auxiliary devices such as motors and solenoids. With this, we will generally use joystick buttons to control these devices. To get started with this, we’ll go through several ways to control devices with joystick buttons.

Did you know that you can click and drag a VI Snippet from a document like this right into your LabVIEW code? Try it with the snippets in this document.

Setup:

No matter what the configuration, you’ll need to add one, two, or more (if you’re really excited) joysticks to the “Begin.vi”. The first example uses 2 joysticks and the others only use one. Give each one a unique name so we can use it in other places, like the snippet below. I named them “LeftStick” and “RightStick” because they are on the left and right sides of my desk. If your joysticks are already configured, great! You can skip this step.

[image: ../../../../_images/setup.png]
The rest of the code in this document will be placed in the “Teleop.VI” This is where we will be programming our joystick buttons to control different aspects of our motors or solenoids.

Scenario 1

“I want a motor to move one way when I press one button and the other way when I press a different button.”

This code uses button 0 on two different joysticks to control the same motor. If button 0 on LeftStick is pressed, the motor moves backward, and if button 0 on RightStick is pressed, the motor moves forward. If both buttons are pressed or neither button is pressed, the motor doesn’t move. Here I named my motor reference “Motor5”, but you can name your motor whatever you want in the “Begin.vi”

[image: ../../../../_images/1-a.png]
You may want to use multiple buttons from the same joystick for control. For an example of this, look at the following VI snippet or the VI snippet in Scenario 2.

[image: ../../../../_images/1-b.png]
Here I used joystick buttons 0 and 2, but feel free to use whatever buttons you need.

Scenario 2

“I want different joystick buttons move at various speeds.”

This example could be helpful if you need to have one motor do different things based on the buttons you press. For instance, let’s say my joystick has a trigger (button 0) and 4 buttons on top (buttons 1 through 4). In this case, the following buttons should have the following functions:

	button 1 - move backward at half speed

	button 2 - move forward at half speed

	button 3 - move backward at 1/4 speed

	button 4 - move forward at 1/4 speed

	trigger - full speed ahead! (forward at full speed)

We would then take the boolean array from the “JoystickGetValues.vi” and wire it to a “Boolean Array to Number” node (Numeric Palette-Conversion Palette). This converts the boolean array to a number that we can use. Wire this numeric to a case structure.

Each case corresponds to a binary representation of the values in the array. In this example, each case corresponds to a one-button combination. We added six cases: 0 (all buttons off), 1 (button 0 on), 2 (button 1 on), 4 (button 2 on), 8 (button 3 on), and 16 (button 4 on). Notice we skipped value 3. 3 would correspond to buttons 0 and 1 pressed at the same time. We did not define this in our requirements so we’ll let the default case handle it.

It might be helpful to review the LabVIEW 2014 Case Structure Help document here:

https://zone.ni.com/reference/en-XX/help/371361L-01/glang/case_structure/

There are also 3 Community Tutorials on case structures here:

https://forums.ni.com/t5/Curriculum-and-Labs-for/Unit-3-Case-Structures-Lesson-1/ta-p/3505945?profile.language=en

https://forums.ni.com/t5/Curriculum-and-Labs-for/Unit-3-Case-Structures-Lesson-2/ta-p/3505933?profile.language=en

https://forums.ni.com/t5/Curriculum-and-Labs-for/Unit-3-Case-Structures-Lesson-3/ta-p/3505979?profile.language=en

[image: ../../../../_images/21.png]
Since our requirements were simple, we only need a single constant in each case. For case 1 (full ahead) we use a 1, for case 2 (half back) we use a -0.5, etc. We can use any constant value between 1 and -1. I left case 0 as the default so if multiple buttons are pressed (any undefined state was reached) the motor will stop. You of course are free to customize these states however you want.

Scenario 3

“I want to control a solenoid with my joystick buttons.”

By now, we are familiar with how the joystick outputs the buttons in an array of booleans. We need to index this array to get the button we are interested in, and wire this boolean to a select node. Since the “Solenoid Set.vi” requires a Enum as an input, the easiest way to get the enum is to right click the “Value” input of the “Solenoid Set.vi” and select “Create Constant”. Duplicate this constant and wire one copy to the True terminal and one to the False terminal of the select node. Then wire the output of the select node to the “Value” input of the solenoid VI.

[image: ../../../../_images/31.png]
Happy Roboting!

 Local and Global Variables in LabVIEW for FRC

Local and Global Variables in LabVIEW for FRC

[image: ../../../../_images/ni-logo3.png]
This example serves as an introduction to local and global variables, how they are used in the default LabVIEW for FRC Robot Project, and how you might want to use them in your project.

Local variables and global variables may be used to transfer data between locations within the same VI (local variables) or within different VI’s (global variables), breaking the conventional Data Flow Paradigm [https://www.ni.com/getting-started/labview-basics/dataflow] for which LabVIEW is famous. Thus, they may be useful when, for whatever reason, you cannot wire the value directly to the node to another.

Note: One possible reason may be that you need to pass data between consecutive loop iterations; Miro_T covered this in this post [https://forums.ni.com/t5/FIRST-Robotics-Competition/Use-of-Shift-Registers-to-Pass-Data-Between-Loop-Iterations/ta-p/3498415?profile.language=en]. It should also be noted that the feedback node [https://zone.ni.com/reference/en-XX/help/371361L-01/lvconcepts/block_diagram_feedback/] in LabVIEW may be used as an equivalent to the shift register, although that may be a topic for another day!

Introduction to Local and Global Variables

Local variables may be used within the same VI. Create a local variable by right-clicking a control or indicator on your Front Panel:

[image: ../../../../_images/11.png]
You may create a local variable from the Structures palette on the block diagram as well. When you have multiple local variables in one VI, you can left-click to choose which variable it is:

[image: ../../../../_images/22.png]
Global variables are created slightly differently. Add one to the block diagram from the Structures palette, and notice that when you double-click it, it opens a separate front panel. This front panel does not have a block diagram, but you add as many entities to the front panel as you wish and save it as a *.vi file:

[image: ../../../../_images/32.png]

Note

Be very careful to avoid race conditions when using local and global variables! Essentially, make sure that you are not accidentally writing to the same variable in multiple locations without a way to know to which location it was last written. For a more thorough explanation, see this help document [https://zone.ni.com/reference/en-XX/help/371361L-01/lvconcepts/using_local_and_global/]

How They are Used in the Default LabVIEW for FRC Robot Project

Global variables for “Enable Vision” and “Image Size” are written to during each iteration of the Robot Main VI…

[image: ../../../../_images/41.png]
… And then read in each iteration of the Vision Processing VI:

[image: ../../../../_images/5.png]
This allows the user, when deploying to Robot Main VI from the LabVIEW Development Environment, to enable/disable vision and change the image size from Robot Main’s Front Panel.

How Can You Use Them in Your Project?

Check out the block diagram for the Periodic Tasks VI. Perhaps there is some value, such as a boolean, that may be written to a global variable in the Teleop VI, and then read from in the Periodic Tasks VI. You can then decide what code or values to use in the Periodic Tasks VI, depending on the boolean global variable:

[image: ../../../../_images/6.png]

 Using the Compressor in LabVIEW

Using the Compressor in LabVIEW

[image: ../../../../_images/ni-logo3.png]
This snippet shows how to set up your roboRIO project to use the Pneumatic Control Module (PCM). The PCM automatically starts and stops the compressor when specific pressures are measured in the tank. In your roboRIO program, you will need to add the following VIs.

For more information, check out the following links:

FRC Pneumatics Manual

PCM User’s Guide [https://ctr-electronics.com/PCM%20User's%20Guide.pdf]

Pneumatics Step by Step for the roboRIO [http://team358.org/files/pneumatic/Pneumatics-StepByStep-roboRIO.pdf]

Begin VI

Place this snippet in the Begin.vi.

[image: ../../../../_images/begin.png]

Teleop VI

Place this snippet in the Teleop.vi. This portion is only required if you are using the outputs for other processes.

[image: ../../../../_images/teleop.png]

Finish VI

Place this snippet in Close Refs, save data, etc. frame of the Finish.vi.

[image: ../../../../_images/finish.png]

 Atuadores

Atuadores

	Visão geral dos atuadores

	Operando cilindros pneumáticos

	Usando controladores de motor no código

	Controladores de velocidade PWM em profundidade

	Usando WPILib para conduzir seu robô

	Movimento repetitivo de baixa potência - servos de controle com WPILib

	LEDs

 Visão geral dos atuadores

Visão geral dos atuadores

Essa sessão discute sobre o controle de motor e pneumático
através de rápidos controladores, solenóides e pneumático, e
sua interface com C++ e Java WPILib.

Controladores de velocidade

Um controlador de velocidade é responsável em seu robô para fazer os motores mover.
Para brushed DC motors como também para CIMs ou 775s, o controlador de velocidade regula
a voltagem do que o motor recebe, muito parecido com uma lâmpada. Para
o controlador de velocidade Brushless como também para o Spark MAX, os controladores regulam
a energia entregue para cada “fase” do motor.

Conectando um controlador de motor BRUSHLESS direto a energia, como também
para a convencional controlador de motor brushed, irá destruir o motor!

Controladores de motores permitidos na FRC

Controladores de velocidade vêm em muitas formas, tamanhos e conjuntos de recursos. Isso
é a lista completa de Controladores de Velocidade permitidos na FRC como de Janeiro 2020:

	DMC 60/DMC 60c Motor Controller (P/N: 410-334-1, 410-334-2)

	Jaguar Motor Controller (P/N: MDL-BDC, MDL-BDC24, and 217-3367) connected to PWM only

	Nidec Dynamo BLDC Motor with Controller to control integral actuator only (P/N 840205-000, am-3740)

	SD540 Motor Controller (P/N: SD540x1, SD540x2, SD540x4, SD540Bx1, SD540Bx2, SD540Bx4, SD540C)

	Spark Motor Controller (P/N: REV-11-1200)

	Spark MAX Motor Controller (P/N: REV-11-2158)

	Talon FX Motor Controller (P/N: 217-6515, 19-708850, am-6515, am-6515_Short) for controlling integral Falcon 500 only

	Talon Motor Controller (P/N: CTRE_Talon, CTRE_Talon_SR, and am-2195)

	Talon SRX Motor Controller (P/N: 217-8080, am-2854, 14-838288)

	Victor 884 Motor Controller (P/N: VICTOR-884-12/12)

	Victor 888 Motor Controller (P/N: 217-2769)

	Victor SP Motor Controller (P/N: 217-9090, am-2855, 14-868380)

	Victor SPX Motor Controller (P/N: 217-9191, 17-868388, am-3748)

	Venom Motor with Controller (P/N BDC-10001) for controlling integral motor only​

Pneumática

Pneumática é um caminho rápido e fácil para fazer alguma coisa que é em um
estado ou outro usando compressão de ar. Para informações em operando pneumática, veja Operando cilindros pneumáticos.

Relay Modules permitidos na FRC

	Spike H-Bridge Relay (P/N: 217-0220 and SPIKE-RELAY-H)

	Automation Direct Relay (P/N: AD-SSR6M12-DC200D, AD-SSR6M25-DC200D, AD-SSR6M40-DC200D)

Controladores pneumáticos permitidos na FRC

	Pneumatics Control Module (P/N: am-2858, 217-4243)

 Operando cilindros pneumáticos

Operando cilindros pneumáticos

Usando o sistema de controle da FRC para controlar a pneumática

Note

Pneumatics Control Module (PCM) é a um dispositivo que utiliza a comunicação CAN que tem controle total do compressor e até 8 módulos solenóides . A PCM é integrada em WPILib através de uma série de classes que simplificam o uso. O controle de circuito fechado do compressor e pressão é tratado pelo hardware da PCM e dos solenóides são manipulados pela Solenóide atualizada, que agora, controla os canais do solenóide na PCM. Além disso, um módulo PCM pode ser usado onde os módulo correspondentes aos solenóides são diferenciados pelo número do módulo nos construtores das classes de Solenóide e Compressor.

[image: ../../../_images/pcm.jpg]
O Módulo de Controle Pneumático da CTR Electronics é responsável por regular a pressão
do robô usando um switch de pressão e um compressor e ligando e desligando os solenóides.
A PCM se comunica com o roboRIO através do CAN. Para obter mais informações, consulte a
Visão geral do hardware do sistema de controle FRC.

Números de módulos PCM

Os módulos da PCM são identificados pelo seus Node ID. O padrão Node ID para
PCMs é 0. Se estiver usando um único PCM na linha CAN é recomendado deixá-lo
no padrão Node ID.

Gerando e armazenando pressão

Na FRC, a pressão é criada usando um compressor pneumático e armazenada em tanques pneumáticos.
O compressor não precisa necessariamente estar no robô, mas deve ser alimentado pela PCM
do robô. O modo de “Closed Loop” no compressor é ativado por padrão, e é ele não recomenda que
as equipes de alterar essa configuração. Quando o “closed loop control” está ativado, o PCM liga
automaticamente o compressor quando o switch pressão está fechado (abaixo do limiar de pressão) e o
desliga quando o switch pressão está aberto (~ 120PSI). Quando o “loop control” está
desativado, o compressor não liga. Usando um compressor, os usuários podem consultar o status
do compressor. O estado (atualmente ativado ou desativado), o estado do switch pressão e a
corrente do compressor podem ser consultados no objeto Compressor.

Note

A PCM da Cross the Road Electronics permite para integrar closed loop control do compressor. Criando qualquer instância de um objeto Solenóide ou Solenóide Duplo habilitará o controle Compressor no PCM correspondente. O objeto Compressor é necessário apenas se você desejar desativar o compressor ou consultar o status do compressor.

Controle Solenóide

As equipes da FRC usam solenóides para realizar várias tarefas, desde a troca de caixas de velocidades até a operação de mecanismos de robô. Um solenóide é uma válvula usada para ativar eletronicamente uma linha de ar pressurizada “ligada” ou “desligada”. Para obter mais informações sobre solenóides, consulte este artigo da Wikipedia <https://en.wikipedia.org/wiki/Solenoid_valve>`__.. Os solenóides são controlados pelo módulo de controle pneumático do robô, ou PCM, que por sua vez é conectado ao roboRIO do robô via CAN. A maneira mais fácil de ver o estado de um solenóide é através do pequeno LED vermelho (que indica se a válvula está “ligada” ou não), e os solenóides podem ser acionados manualmente quando não forem energizados com o pequeno botão adjacente ao LED.

Os solenóides de ação simples aplicam ou liberam a pressão de uma única porta de saída. Eles geralmente são usados ​​quando uma força externa fornece a ação de retorno do cilindro (mola, gravidade, mecanismo separado) ou em pares para atuar como um solenóide duplo. Um solenóide duplo alterna o fluxo de ar entre duas portas de saída (muitas também têm uma posição central em que nenhuma saída é ventilada ou conectada à entrada). As válvulas solenóides duplas são comumente usadas quando você deseja controlar as ações de extensão e retração de um cilindro usando a pressão do ar. As válvulas solenóides duplas têm duas entradas elétricas que se conectam novamente a dois canais separados na ruptura do solenóide.

Os módulos PCM são identificados pelo seu ID de dispositivo CAN. O ID CAN padrão para PCMs é 0. Se você estiver usando um único PCM no barramento, é recomendável deixá-lo no ID CAN padrão. Esse ID pode ser alterado com o aplicativo Phoenix Tuner, além de outras informações de depuração. O Phoenix Tuner pode ser baixado no GitHub.<https://github.com/CrossTheRoadElec/Phoenix-Releases>`_ Para obter mais informações sobre como definir IDs CAN do PCM, consulte Atualização e configuração do módulo de controle pneumático e do painel de distribuição de energia.

Solenóides únicos no WPILib

Solenóides únicos no WPILib são controlados usando a classe Solenóide. Para construir um objeto Solenóide, simplesmente passe o número da porta desejada (assume CAN ID 0) ou CAN ID e número da porta ao construtor. Para definir o valor do conjunto de chamadas do solenóide (true) para ativar ou definir (false) para desativar a saída do solenóide.

Solenóides duplos no WPILib

Os solenóides duplos são controlados pela classe Solenóides duplos no WPILib. Eles são construídos de maneira semelhante ao solenóide único, mas agora existem dois números de porta a serem passados ​​ao construtor, um canal direto (primeiro) e um canal reverso (segundo). O estado da válvula pode então ser definido como kOff (nenhuma saída ativada), kForward (canal direto ativado) ou kReverse (canal reverso ativado). Além disso, o PCM CAN ID pode ser passado para o Solenóide duplo se as equipes tiverem um PCM CAN ID não padrão.

 Usando controladores de motor no código

Usando controladores de motor no código

Os controladores de motores têm dois tipos principais: CAN e PWM. Um controlador CAN pode enviar informações de status mais detalhadas de volta ao roboRIO, enquanto um controlador PWM pode ser definido apenas como um valor. Para obter informações sobre o uso desses motores com as classes de transmissão WPI, consulte Usando WPILib para conduzir seu robô.

Usando controladores de velocidade PWM

Os controladores de velocidade PWM podem ser controlados da mesma forma que um controlador de velocidade CAN. Para obter um plano de fundo mais detalhado sobre how eles funcionam, consulte Controladores de velocidade PWM em profundidade. Para usar um controlador de velocidade PWM, basta usar a classe de controlador de velocidade apropriada fornecida pela WPI e fornecer a porta na qual os controladores de velocidade estão conectados no roboRIO. Todos os controladores de motor aprovados têm classes WPI fornecidas para eles.

Controladores CAN motor

Um punhado de controladores de velocidade CAN está disponível em fornecedores como CTR Electronics e REV Robotics.

SPARK MAX

Para obter informações sobre o SparkMAX CAN Speed ​​Controller, que pode ser usado no modo CAN ou PWM, consulte os software resources [https://www.revrobotics.com/sparkmax-software/]
e example code. [https://github.com/REVrobotics/SPARK-MAX-Examples]

Controladores de motor CTRE CAN

Consulte a documentação da CTR de terceiros no software Phoenix para obter informações mais detalhadas. A documentação está disponível here. [https://phoenix-documentation.readthedocs.io/en/latest/]

 Controladores de velocidade PWM em profundidade

Controladores de velocidade PWM em profundidade

O WPILib possui amplo suporte para o controle do motor. Existem várias classes que representam diferentes tipos de controladores de velocidade e servos. Atualmente, existem duas classes de controladores de velocidade, controladores de motor baseados em PWM e controladores de motor baseados em CAN. O WPILib também contém classes compostas (como DifferentialDrive) que permitem controlar vários motores com um único objeto. Este artigo abordará os detalhes dos controladores de motor PWM; Controladores CAN e classes compostas serão abordados em artigos separados.

Controladores PWM, breve teoria de operação

PWM significa Modulação por largura de pulso. Para controladores de motor, o PWM pode se referir ao sinal de entrada e ao método que o controlador usa para controlar a velocidade do motor. Para controlar a velocidade do motor, o controlador deve variar a tensão de entrada percebida do motor. Para fazer isso, o controlador liga e desliga a tensão total de entrada muito rapidamente, variando a quantidade de tempo em que se baseia com base no sinal de controle. Devido às constantes de tempo mecânicas e elétricas dos tipos de motores usados ​​no FRC, essa comutação rápida produz um efeito equivalente ao da aplicação de uma tensão mais baixa fixa (50% de comutação produz o mesmo efeito que a aplicação de ~ 6V).

O sinal PWM que os controladores usam para uma entrada é um pouco diferente. Mesmo nos limites da faixa do sinal (avanço máximo ou reverso máximo), o sinal nunca se aproxima de um ciclo de trabalho de 0% ou 100%. Em vez disso, os controladores usam um sinal com um período de 5 ms ou 10 ms e uma largura de pulso no ponto médio de 1,5 ms. Muitos dos controladores usam o tempo típico do controlador RC de 1ms a 2ms.

Valores de saída brutos versus dimensionados

Em geral, todas as classes de controladores de motor no WPILib assumem um valor escalonado de -1,0 a 1,0 como saída para um atuador. O módulo PWM no FPGA no roboRIO é capaz de gerar sinais PWM com períodos de 5, 10 ou 20ms e pode variar a largura do pulso em 2000 etapas de ~ 0,001ms cada em torno do ponto médio (1000 etapas em cada direção em torno do ponto médio)) Os valores brutos enviados para este módulo estão nesta faixa de 0-2000, sendo 0 um caso especial que mantém o sinal baixo (desativado). A classe para cada controlador de motor contém informações sobre quais são os valores típicos de limite (min, max e cada lado da faixa morta), bem como o ponto médio típico. O WPILib pode então usar esses valores para mapear o valor escalado na faixa adequada para o controlador do motor. Isso permite que o código alterne perfeitamente entre diferentes tipos de controladores e abstrai os detalhes da sinalização específica. Controladores de velocidade de calibração

Portanto, se o WPILib lida com toda essa escala, por que você precisaria calibrar seu controlador de velocidade? Os valores que o WPILib usa para dimensionar são aproximados com base na medição de várias amostras de cada tipo de controlador. Devido a uma variedade de fatores, o tempo de um controlador de velocidade individual pode variar um pouco. Para eliminar definitivamente o “zumbido” (sinal do ponto médio interpretado como um leve movimento em uma direção) e conduzir o controlador até o extremo, é recomendável calibrar os controladores. Em geral, o procedimento de calibração para cada controlador envolve colocar o controlador no modo de calibração e, em seguida, direcionar o sinal de entrada para cada extremo e, em seguida, retornar ao ponto médio. Para obter exemplos de como usar esses controladores de velocidade no seu código, consulte Using Motor Controllers in
Code/Using PWM Speed Controllers

 Usando WPILib para conduzir seu robô

Usando WPILib para conduzir seu robô

O WPILib contém muitas explicações para ajudar seu robô a dirigir mais rápido.

Drivetrains padrão

Robôs de acionamento diferencial

[image: ../../../_images/diffdrive.jpg]
Essas bases de acionamento normalmente têm duas ou mais rodas on-line de tração ou omni por lado (por exemplo, 6WD ou 8WD) e também podem ser conhecidas como “skid-steer”, “tank drive” ou “West Coast Drive”. O sistema de transmissão do Kit de peças é um exemplo de acionamento diferencial. Essas unidades de transmissão são capazes de dirigir para frente / para trás e podem girar dirigindo os dois lados em direções opostas, fazendo com que as rodas deslizem para os lados. Essas unidades de transmissão não são capazes de movimento translacional lateral.

Mecanum Drive

[image: ../../../_images/mecanumdrive.jpg]
Mecanum drive é um método de dirigir usando rodas especialmente projetadas que permitem ao robô dirigir em qualquer direção sem alterar a orientação do robô. Um robô com um sistema de transmissão convencional (todas as rodas apontando na mesma direção) deve girar na direção que precisa dirigir. Um robô mecanum pode se mover em qualquer direção sem primeiro girar e é chamado de acionamento holonômico. As rodas (mostradas neste robô) possuem roletes que fazem com que as forças de acionamento sejam aplicadas em um ângulo de 45 graus em vez de para a frente, como no caso de um acionamento convencional.

Quando vistos de cima, os roletes no trem de força mecanum devem formar um padrão ‘X’. Isso resulta nos vetores de força (ao dirigir a roda para frente) nas duas rodas dianteiras apontando para frente e para dentro e as duas rodas traseiras apontando para frente e para fora. Girando as rodas em direções diferentes, vários componentes dos vetores de força são cancelados, resultando no movimento desejado do robô. Um gráfico rápido de diferentes movimentos foi fornecido abaixo, traçando os vetores de força para cada um desses movimentos, podendo ajudar a entender como essas unidades de transmissão funcionam. Ao variar as velocidades das rodas, além da direção, os movimentos podem ser combinados, resultando em translação em qualquer direção e rotação, simultaneamente.

Convenções de classe de unidade

Note

Este artigo contém as convenções e padrões usados ​​pelas classes WPILib Drive (DifferentialDrive, MecanumDrive e KilloughDrive). Para mais detalhes sobre o uso dessas classes, consulte os artigos subseqüentes.

Inversão do motor

Por padrão, a classe inverte as saídas do motor para o lado direito do trem de força. Geralmente, isso significa que nenhuma inversão precisa ser feita nos objetos individuais do SpeedController. Para desativar esse comportamento, use o método setRightSideInverted ().

Squaring Inputs & Input Deadband

Ao dirigir robôs, geralmente é desejável manipular as entradas do joystick, de modo que o robô tenha um controle mais preciso em baixas velocidades enquanto ainda usa toda a faixa de saída. Uma maneira de fazer isso é alinhar ao quadrado a entrada do joystick e reaplicar o sinal. Por padrão, a classe Differential Drive quadrará as entradas. Se isso não for desejado (por exemplo, se você passar valores de um PIDController), use um dos métodos de unidade com o parâmetro squaredInputs e defina-o como false.

Por padrão, a classe Unidade Diferencial aplica uma faixa morta de entrada de 0,02. Isso significa que os valores de entrada com magnitude abaixo de 0,02 (após qualquer quadrado como descrito acima) serão definidos como 0. Na maioria dos casos, essas pequenas entradas resultam da centralização imperfeita do joystick e não são suficientes para causar movimento do trem de força, a faixa morta ajuda a reduzir desnecessários aquecimento do motor que pode resultar da aplicação desses pequenos valores no sistema de transmissão. Para alterar a banda morta, use o método setDeadband ().

Motor seguro

O Motor seguro é um mecanismo no WPILib que pega o conceito de um cão de guarda e o divide em um cão de guarda (temporizador de segurança do motor) para cada atuador individual. Observe que esse mecanismo de proteção é um complemento ao System Watchdog, que é controlado pelo código de Comunicações de Rede e pelo FPGA e desativará todas as saídas do atuador se ele não receber um pacote de dados válido por 125ms.

A finalidade do mecanismo de segurança do motor é a mesma de um cronômetro de vigilância, para desativar mecanismos que possam causar danos a si mesmos, pessoas ou propriedades se o código travar e não atualizar adequadamente a saída do atuador. A Segurança do motor quebra esse conceito por atuador, para que você possa determinar apropriadamente onde é necessário e onde não é. Exemplos de mecanismos que devem ter a segurança do motor ativada são sistemas como trens e braços de transmissão. Se esses sistemas ficarem presos a um valor específico, poderão causar danos ao meio ambiente ou a si próprios. Um exemplo de mecanismo que pode não precisar de segurança do motor é um volante giratório para um atirador. Se esse mecanismo ficar bloqueado em um valor específico, ele simplesmente continuará girando até que o robô seja desativado.

O recurso Segurança do motor opera mantendo um temporizador que rastreia quanto tempo faz desde que o método feed () foi chamado para esse atuador. O código na classe Driver Station inicia uma comparação desses temporizadores com os valores de tempo limite de qualquer atuador com segurança ativada a cada 5 pacotes recebidos (100 ms nominais). Os métodos set () de cada classe de controlador de velocidade e os métodos set () e setAngle () da classe de servo chamam feed () para indicar que a saída do atuador foi atualizada.
The Motor Safety interface of speed controllers can be interacted with by the user using the following methods:

Por padrão, todos os objetos RobotDrive habilitam a Segurança do Motor. Dependendo do mecanismo e da estrutura do seu programa, você pode configurar o tempo limite da segurança do motor (em segundos). O tempo limite é configurado por atuador e não é uma configuração global. O valor padrão (e mínimo útil) é 100ms.

Convenções do Eixo

[image: ../../../_images/axisconventions.jpg]
Esta biblioteca usa a convenção de eixos NED (North-East-Down como referência externa no quadro mundial). O eixo X positivo aponta para a frente, o eixo Y positivo aponta para a direita e o eixo Z positivo aponta para baixo. As rotações seguem a regra da direita, portanto, a rotação no sentido horário ao redor do eixo Z é positiva.

Warning

Esta convenção é diferente da convenção para joysticks que geralmente têm -Y como Up (geralmente mapeado para acelerar) e + X como Right. Preste muita atenção aos exemplos abaixo se desejar ajuda com o mapeamento típico de Joystick-> Drive.

Usando DifferentialDrive para controlar o comando diferencial (CMB) dos robôs

Note

O WPILib fornece classes de movimentação de robôs separadas para as configurações mais comuns de trem de força (diferencial, mecanismo e Killough). A classe DifferentialDrive lida com a configuração do drivetrain diferencial. Essas bases de acionamento normalmente têm duas ou mais rodas on-line de tração ou omni por lado (por exemplo, 6WD ou 8WD) e também podem ser conhecidas como “skid-steer”, “tank drive” ou “West Coast Drive”. O sistema de transmissão do Kit de peças é um exemplo de acionamento diferencial. Existem métodos para controlar a unidade com 3 estilos diferentes (“Tanque”, “Arcade” ou “Curvatura”), explicados no artigo abaixo.

Unidade Multi-Motor com SpeedControllerGroups

Muitas unidades de transmissão FRC têm mais de 1 motor em cada lado. Para usá-los com o DifferentialDrive, os motores de cada lado precisam ser coletados em um único SpeedController, usando a classe SpeedControllerGroup. Os exemplos abaixo mostram um trem de força com 4 motores (2 por lado). Para estender a mais motores, basta criar os controladores adicionais e passar todos eles para o construtor de grupo SpeedController (é necessário um número arbitrário de entradas).

Modos de acionamento

Note

A classe DifferentialDrive contém três modos padrão diferentes de acionar os motores do seu robô.

	Tank Drive, que controla os lados esquerdo e direito de forma independente;

	Arcade Drive, que controla a velocidade de avanço e rotação;

	Curvature Drive, um subconjunto do Arcade Drive, que faz com que o seu robô lide com um carro com curvas constantes.

Como mencionado acima, a classe DifferentialDrive contém três métodos padrão para controlar robôs skid-steer ou WCD. Observe que você pode criar seus próprios métodos para controlar a direção do robô e pedir que chamem tankDrive () com as entradas derivadas dos motores esquerdo e direito.

O modo de acionamento do tanque é usado para controlar cada lado do trem de força de forma independente (geralmente com um eixo de joystick individual controlando cada um). Este exemplo mostra como usar o eixo Y de dois joysticks separados para executar o drivetrain no modo Tank. A construção dos objetos foi omitida, acima para a construção do trem de força e aqui para a construção do Joystick.

O modo Arcade Drive é usado para controlar o trem de força usando velocidade / acelerador e taxa de rotação. Isso geralmente é usado com dois eixos de um único joystick ou dividido entre joysticks (geralmente em um único gamepad), com o acelerador saindo de um manípulo e a rotação de outro. Este exemplo mostra como usar um único joystick com o modo Arcade. A construção dos objetos foi omitida, acima para a construção do trem de força e aqui para a construção do Joystick.

Como o Arcade Drive, o modo Curvature Drive é usado para controlar o trem de força usando velocidade / aceleração e taxa de rotação. A diferença é que o controle de rotação está tentando controlar o raio de curvatura em vez da taxa de mudança de rumo. Este modo também possui um parâmetro de rotação rápida que é usado para ativar um submodo que permite a rotação no lugar. Este exemplo mostra como usar um único joystick com o modo Curvatura. A construção dos objetos foi omitida, acima para a construção do trem de força e aqui para a construção do Joystick.

 Movimento repetitivo de baixa potência - servos de controle com WPILib

Movimento repetitivo de baixa potência - servos de controle com WPILib

Os Servo Motors são um tipo de motores que integram feedback posicional ao motor, a fim de permitir que um único motor execute movimentos repetíveis e controláveis, assumindo a posição de sinal de entrada. O WPILib fornece a capacidade de controlar servos que correspondem à especificação de entrada de “hábito” comum (sinal PWM, largura de pulso de 1,0ms-2,0ms).

 LEDs

LEDs

Os LEDs são comumente usados pelas equipes há vários anos por vários motivos. Eles permitem que as equipes depurem a funcionalidade do robô do público, forneçam um marcador visual para o robô e podem simplesmente adicionar algum apelo visual. O WPILib possui uma API para controlar os LEDs WS2812 com seus pinos de dados conectados via PWM.

Referenciando os LEDs

Você, primeiramente, cria um AddressableLED objeto que usa a porta PWM como argumento. Ele must ser um cabeçalho PWM no roboRIO. Depois, você define o número de LEDs localizados na sua faixa de LEDs, o que pode ser feito com a setLength() função.

Important

É importante notar que definir o comprimento do cabeçalho LED é uma tarefa cara e ele não recomendado para executar este periodicamente.

Depois que o comprimento da faixa for definido, você precisará criar um AddressableLEDBuffer objeto que recebe o número de LEDs como entrada. Você ligará myAddressableLed.setData(myAddressableLEDBuffer) para definir os dados de saída do led. Finalmente, você pode ligar to set the led output data myAddressableLed.start() para escrever a saída continuamente. Abaixo está um exemplo completo do processo de inicialização.

Note

C++ não possui um AddressableLEDBuffer, e usa um Array.

Definindo a faixa para uma cor

A cor pode ser definida como um led individual na faixa usando dois métodos: `` setRGB``, que aceita valores RGB como entrada e setHSV() na qual aceita valores HSV como entrada.

Usando valores RGB

RGB significa vermelho, verde e azul. Este é um modelo de cores bastante comum, pois é bastante fácil de entender. Os LEDs podem ser configurados com o setRGB um método que leva 4 argumentos: índice do LED, quantidade de vermelho, quantidade de verde, quantidade de azul. A quantidade de vermelho, verde e azul são valores inteiros entre 0 e 255.

Usando valores HSV

HSV significa Matiz, Saturação e Valor. Matiz descreve a cor ou matiz, saturação sendo a quantidade de cinza e valor sendo o brilho. No WPILib, Hue é um número inteiro de 0 a 180. Saturação e Valor são números inteiros de 0 a 255. Se você observar um seletor de cores como Google’s [https://www.google.com/search?q=color+picker], a matiz será de 0 a 360 e a saturação e o valor variam de 0% a 100%. É da mesma maneira que o OpenCV lida com cores HSV. Verifique se os valores HSV inseridos no WPILib estão corretos ou se a cor produzida pode não ser a mesma esperada.

[image: HSV models picture]
Os LEDs podem ser configurados com o``setHSV`` método que utiliza 4 argumentos: índice do LED, matiz, saturação e valor. Um exemplo é mostrado abaixo para definir a cor de uma faixa de LED para vermelho (matiz de 0).

Criando um efeito arco-íris

O método abaixo faz algumas coisas importantes. Dentro do loop for, distribui igualmente o matiz por todo o comprimento do fio e armazena o matiz de LED individual em uma variável chamada hue. Em seguida, o loop for define o valor HSV desse pixel especificado usando o valor hue.

Movendo-se para fora do loop for, o m_rainbowFirstPixelHue itera o pixel que contém o matiz “inicial”, criando o efeito arco-íris. m_rainbowFirstPixelHue para verifica se a matiz está dentro dos limites da matiz de 180. Isso ocorre porque a matiz HSV é um valor de 0 a 180.

Note

É uma boa prática de robô manter o robotPeriodic() método o mais limpo possível, por isso, criaremos um método para lidar com a configuração de nossos dados de LED. Poderemos ligar o método rainbow() e ligar para robotPeriodic().

Agora que tem-se o nosso rainbow método criado, vamos ter que, na realidade, ligar o método e definar os dados do LED.

 Sensores

Sensores

	Sensor Overview - Software

	Acelerômetros - Software

	Gyroscopes - Software

	Ultrasonics - Software

	Contadores

	Encoders - Software

	Entradas analógicas - Software

	Potenciômetros analógicos - Software

	Digital Inputs - Software

 Sensor Overview - Software

Sensor Overview - Software

Note

This section covers using sensors in software. For a guide to sensor hardware, see Sensor Overview - Hardware.

Note

While cameras may definitely be considered “sensors”, vision processing is a sufficiently-complicated subject that it is covered in its own section, rather than here.

In order to be effective, it is often vital for robots to be able to gather information about their surroundings. Devices that provide feedback to the robot on the state of its environment are called “sensors.” WPILib innately supports a large variety of sensors through classes included in the library. This section will provide a guide to both using common sensor types through WPILib, as well as writing code for sensors without official support.

What sensors does WPILIB support?

The roboRIO includes a FPGA [https://en.wikipedia.org/wiki/Field-programmable_gate_array] which allows accurate real-time measuring of a variety of sensor input. WPILib, in turn, provides a number of classes for accessing this functionality.

[image: Types of Sensors]

WPILib provides native support for:

	Accelerometers

	Gyroscopes

	Ultrasonic rangefinders

	Potentiometers

	Counters

	Quadrature encoders

	Limit switches

Additionally, WPILib includes lower-level classes for interfacing directly with the FPGA’s digital and analog inputs and outputs.

 Acelerômetros - Software

Acelerômetros - Software

Note

Esta seção abrange acelerômetros em software. Para obter um guia de hardware para acelerômetros, consulte Accelerometers - Hardware.

Um acelerômetro é um dispositivo que mede a aceleração.

Os acelerômetros geralmente vêm em dois tipos: eixo único e 3 eixos. Um acelerômetro de eixo único mede a aceleração ao longo de uma dimensão espacial; um acelerômetro de 3 eixos mede a aceleração ao longo das três dimensões espaciais de uma só vez.

O WPILib suporta acelerômetros de eixo único através da `AnalogAccelerometer`_ .

Os acelerômetros de três eixos geralmente exigem protocolos de comunicação mais complicados (como SPI ou I2C) para enviar dados multidimensionais. O WPILib possui suporte nativo para os seguintes acelerômetros de 3 eixos:
- ADXL345_I2C
- ADXL345_SPI
- ADXL362
- BuiltInAccelerometer

Acelerômetro analógico

The AnalogAccelerometer (Java [https://first.wpi.edu/FRC/roborio/release/docs/java/edu/wpi/first/wpilibj/AnalogAccelerometer.html], C++ [https://first.wpi.edu/FRC/roborio/release/docs/cpp/classfrc_1_1AnalogAccelerometer.html]) permite que os usuários leiam valores de um acelerômetro de eixo único conectado a uma das entradas analógicas do roboRIO.

Se os usuários tiverem um acelerômetro analógico de 3 eixos, poderão usar três instâncias dessa classe, uma para cada eixo.

A interface do acelerômetro

Todos os acelerômetros de 3 eixos no WPILib implementam a Accelerometer interface (Java [https://first.wpi.edu/FRC/roborio/release/docs/java/edu/wpi/first/wpilibj/interfaces/Accelerometer.html], C++ [https://first.wpi.edu/FRC/roborio/release/docs/cpp/classfrc_1_1Accelerometer.html]). Essa interface define a funcionalidade e as configurações comuns a todos os acelerômetros de 3 eixos suportados.

O Accelerometer interface contém getters para a aceleração ao longo de cada direção cardinal (x, ye z), bem como um setter para o intervalo de acelerações que o acelerômetro medirá.

Warning

Nem todos os acelerômetros são capazes de medir todas as faixas.

ADXL345_I2C

A ADXL345_I2C (Java [https://first.wpi.edu/FRC/roborio/release/docs/java/edu/wpi/first/wpilibj/ADXL345_I2C.html], C++ [https://first.wpi.edu/FRC/roborio/release/docs/cpp/classfrc_1_1ADXL345__I2C.html]) fornece suporte para o acelerômetro ADXL345 através do barramento de comunicação I2C.

ADXL345_SPI

A ADXL345_SPI (Java [https://first.wpi.edu/FRC/roborio/release/docs/java/edu/wpi/first/wpilibj/ADXL345_SPI.html], C++ [https://first.wpi.edu/FRC/roborio/release/docs/cpp/classfrc_1_1ADXL345__SPI.html]) fornece suporte para o acelerômetro ADXL345 por meio do barramento de comunicações SPI communications.

ADXL362

A ADXL362 (Java [https://first.wpi.edu/FRC/roborio/release/docs/java/edu/wpi/first/wpilibj/ADXL362.html], C++ [https://first.wpi.edu/FRC/roborio/release/docs/cpp/classfrc_1_1ADXL362.html]) fornece suporte para o acelerômetro ADXL362 através do barramento de comunicações SPI.

BuiltInAccelerometer

A BuiltInAccelerometer (Java [https://first.wpi.edu/FRC/roborio/release/docs/java/edu/wpi/first/wpilibj/BuiltInAccelerometer.html], C++ [https://first.wpi.edu/FRC/roborio/release/docs/cpp/classfrc_1_1BuiltInAccelerometer.html]) fornece acesso ao próprio acelerômetro interno do roboRIO:

Third-party accelerometers

Embora o WPILib forneça suporte nativo para vários acelerômetros disponíveis no kit de peças ou através da FIRST Choice, existem alguns dispositivos populares AHRS (Sistema de Referência de Atitude e Direção) comumente usados ​​no FRC que incluem acelerômetros. Eles geralmente são controlados por meio de bibliotecas de fornecedores, embora, se tiverem uma saída analógica simples, possam ser usados ​​com `AnalogAccelerometer`_

Usando acelerômetros no código

Note

Acelerômetros, como o próprio nome sugere, medem a aceleração. Acelerômetros precisos podem ser usados ​​para determinar a posição através da dupla integração (já que a aceleração é a segunda derivada da posição), da mesma maneira que os giroscópios são usados ​​para determinar a direção. No entanto, os acelerômetros disponíveis para uso em FRC não têm qualidade suficientemente alta para serem usados ​​dessa maneira.

Recomenda-se o uso de acelerômetros no FRC para qualquer aplicação que precise de uma medição aproximada da aceleração atual. Isso pode incluir a detecção de colisões com outros robôs ou elementos de campo, para que os mecanismos vulneráveis ​​possam ser retraídos automaticamente. Eles também podem ser usados ​​para determinar quando o robô está passando por terrenos acidentados para uma rotina autônoma (como atravessar as defesas no FIRST Stronghold).

Para detectar colisões, geralmente é mais robusto medir o empurrão do que a aceleração. O empurrão é a derivada (ou taxa de mudança) da aceleração e indica a rapidez com que as forças do robô estão mudando - o impulso repentino de uma colisão causa um aumento acentuado no empurrão. Jerk pode ser determinado simplesmente tomando a diferença das medições de aceleração subsequentes e dividindo pelo tempo entre elas:

A maioria dos acelerômetros legais para o uso de FRC é bastante barulhenta e geralmente é uma boa ideia combiná-los com a LinearFilter (Java [https://first.wpi.edu/FRC/roborio/release/docs/java/edu/wpi/first/wpilibj/filters/LinearDigitalFilter.html], C++ [https://first.wpi.edu/FRC/roborio/release/docs/cpp/classfrc_1_1LinearDigitalFilter.html]) para reduzir o ruído.

 Gyroscopes - Software

Gyroscopes - Software

Note

This section covers gyros in software. For a hardware guide to gyros, see Gyroscopes - Hardware.

A gyroscope, or “gyro,” is an angular rate sensor typically used in robotics to measure and/or stabilize robot headings. WPILib natively provides specific support for the ADXRS450 gyro available in the kit of parts, as well as more general support for a wider variety of analog gyros through the AnalogGyro class.

The Gyro interface

All natively-supported gyro objects in WPILib implement the Gyro interface (Java [https://first.wpi.edu/FRC/roborio/release/docs/java/edu/wpi/first/wpilibj/interfaces/Gyro.html], C++ [https://first.wpi.edu/FRC/roborio/release/docs/cpp/classfrc_1_1Gyro.html]). This interface provides methods for getting the current angular rate and heading, zeroing the current heading, and calibrating the gyro.

Note

It is crucial that the robot remain stationary while calibrating a gyro.

ADXRS450_Gyro

The ADXRS450_Gyro class (Java [https://first.wpi.edu/FRC/roborio/release/docs/java/edu/wpi/first/wpilibj/ADXRS450_Gyro.html], C++ [https://first.wpi.edu/FRC/roborio/release/docs/cpp/classfrc_1_1ADXRS450__Gyro.html]) provides support for the Analog Devices ADXRS450 gyro available in the kit of parts, which connects over the SPI bus.

Note

ADXRS450 Gyro accumulation is handled through special circuitry in the FPGA; accordingly only a single instance of ADXRS450_Gyro may be used.

Java

C++

// Creates an ADXRS450_Gyro object on the MXP SPI port
Gyro gyro = new ADXRS450_Gyro(SPI.Port.kMXP);

// Creates an ADXRS450_Gyro object on the MXP SPI port
ADXRS450_Gyro gyro{SPI::Port::kMXP};

AnalogGyro

The AnalogGyro class (Java [https://first.wpi.edu/FRC/roborio/release/docs/java/edu/wpi/first/wpilibj/AnalogGyro.html], C++ [https://first.wpi.edu/FRC/roborio/release/docs/cpp/classfrc_1_1AnalogGyro.html]) provides support for any single-axis gyro with an analog output.

Note

Gyro accumulation is handled through special circuitry in the FPGA; accordingly, AnalogGyro`s may only be used on analog ports 0 and 1.

Java

C++

// Creates an AnalogGyro object on port 0
Gyro gyro = new AnalogGyro(0);

// Creates an AnalogGyro object on port 0
AnalogGyro gyro{0};

Third-party gyros

While WPILib provides native support for a the ADXRS450 gyro available in the kit of parts and for any analog gyro, there are a few popular AHRS (Attitude and Heading Reference System) devices commonly used in FRC that include accelerometers and require more complicated communications. These are generally controlled through vendor libraries.

Using gyros in code

Note

As gyros measure rate rather than position, position is inferred by integrating (adding up) the rate signal to get the total change in angle. Thus, gyro angle measurements are always relative to some arbitrary zero angle (determined by the angle of the gyro when either the robot was turned on or a zeroing method was called), and are also subject to accumulated errors (called “drift”) that increase in magnitude the longer the gyro is used. The amount of drift varies with the type of gyro.

Gyros are extremely useful in FRC for both measuring and controlling robot heading. Since FRC matches are generally short, total gyro drift over the course of an FRC match tends to be manageably small (on the order of a couple of degrees for a good-quality gyro). Moreover, not all useful gyro applications require the absolute heading measurement to remain accurate over the course of the entire match.

Displaying the robot heading on the dashboard

Shuffleboard includes a widget for displaying heading data from a Gyro in the form of a compass. This can be helpful for viewing the robot heading when sight lines to the robot are obscured:

Java

C++

Gyro gyro = new ADXRS450_Gyro(SPI.Port.kMXP);

public void robotInit() {
 // Places a compass indicator for the gyro heading on the dashboard
 // Explicit down-cast required because Gyro does not extend Sendable
 Shuffleboard.getTab("Example tab").add((Sendable) gyro);
}

frc::ADXRS450_Gyro gyro{frc::SPI::Port::kMXP};

void Robot::RobotInit() {
 // Places a compass indicator for the gyro heading on the dashboard
 frc::Shuffleboard.GetTab("Example tab").Add(gyro);
}

Stabilizing heading while driving

A very common use for a gyro is to stabilize robot heading while driving, so that the robot drives straight. This is especially important for holonomic drives such as mecanum and swerve, but is extremely useful for tank drives as well.

This is typically achieved by closing a PID controller on either the turn rate or the heading, and piping the output of the loop to one’s turning control (for a tank drive, this would be a speed differential between the two sides of the drive).

Warning

Like with all control loops, users should be careful to ensure that the sensor direction and the turning direction are consistent. If they are not, the loop will be unstable and the robot will turn wildly.

Example: Tank drive stabilization using turn rate

The following example shows how to stabilize heading using a simple P loop closed on the turn rate. Since a robot that is not turning should have a turn rate of zero, the setpoint for the loop is implicitly zero, making this method very simple.

Java

C++

Gyro gyro = new ADXRS450_Gyro(SPI.Port.kMXP);

// The gain for a simple P loop
double kP = 1;

// Initialize motor controllers and drive
Spark left1 = new Spark(0);
Spark left2 = new Spark(1);

Spark right1 = new Spark(2);
Spark right2 = new Spark(3);

SpeedControllerGroup leftMotors = new SpeedControllerGroup(left1, left2);
SpeedControllerGroup rightMotors = new SpeedControllerGroup(right1, right2);

DifferentialDrive drive = new DifferentialDrive(leftMotors, rightMotors);

@Override
public void autonomousPeriodic() {
 // Setpoint is implicitly 0, since we don't want the heading to change
 double error = -gyro.getRate();

 // Drives forward continuously at half speed, using the gyro to stabilize the heading
 drive.tankDrive(.5 + kP * error, .5 - kP * error);
}

frc::ADXRS450_Gyro gyro{frc::SPI::Port::kMXP};

// The gain for a simple P loop
double kP = 1;

// Initialize motor controllers and drive
frc::Spark left1{0};
frc::Spark left2{1};
frc::Spark right1{2};
frc::Spark right2{3};

frc::SpeedControllerGroup leftMotors{left1, left2};
frc::SpeedControllerGroup rightMotors{right1, right2};

frc::DifferentialDrive drive{leftMotors, rightMotors};

void Robot::AutonomousPeriodic() {
 // Setpoint is implicitly 0, since we don't want the heading to change
 double error = -gyro.GetRate();

 // Drives forward continuously at half speed, using the gyro to stabilize the heading
 drive.TankDrive(.5 + kP * error, .5 - kP * error);
}

More-advanced implementations can use a more-complicated control loop. When closing the loop on the turn rate for heading stabilization, PI loops are particularly effective.

Example: Tank drive stabilization using heading

The following example shows how to stabilize heading using a simple P loop closed on the heading. Unlike in the turn rate example, we will need to set the setpoint to the current heading before starting motion, making this method slightly more-complicated.

Java

C++

Gyro gyro = new ADXRS450_Gyro(SPI.Port.kMXP);

// The gain for a simple P loop
double kP = 1;

// The heading of the robot when starting the motion
double heading;

// Initialize motor controllers and drive
Spark left1 = new Spark(0);
Spark left2 = new Spark(1);

Spark right1 = new Spark(2);
Spark right2 = new Spark(3);

SpeedControllerGroup leftMotors = new SpeedControllerGroup(left1, left2);
SpeedControllerGroup rightMotors = new SpeedControllerGroup(right1, right2);

DifferentialDrive drive = new DifferentialDrive(leftMotors, rightMotors);

@Override
public void autonomousInit() {
 // Set setpoint to current heading at start of auto
 heading = gyro.getAngle();
}

@Override
public void autonomousPeriodic() {
 double error = heading - gyro.getAngle();

 // Drives forward continuously at half speed, using the gyro to stabilize the heading
 drive.tankDrive(.5 + kP * error, .5 - kP * error);
}

frc::ADXRS450_Gyro gyro{frc::SPI::Port::kMXP};

// The gain for a simple P loop
double kP = 1;

// The heading of the robot when starting the motion
double heading;

// Initialize motor controllers and drive
frc::Spark left1{0};
frc::Spark left2{1};
frc::Spark right1{2};
frc::Spark right2{3};

frc::SpeedControllerGroup leftMotors{left1, left2};
frc::SpeedControllerGroup rightMotors{right1, right2};

frc::DifferentialDrive drive{leftMotors, rightMotors};

void Robot::AutonomousInit() {
 // Set setpoint to current heading at start of auto
 heading = gyro.GetAngle();
}

void Robot::AutonomousPeriodic() {
 double error = heading - gyro.GetAngle();

 // Drives forward continuously at half speed, using the gyro to stabilize the heading
 drive.TankDrive(.5 + kP * error, .5 - kP * error);
}

More-advanced implementations can use a more-complicated control loop. When closing the loop on the heading for heading stabilization, PD loops are particularly effective.

Turning to a set heading

Another common and highly-useful application for a gyro is turning a robot to face a specified direction. This can be a component of an autonomous driving routine, or can be used during teleoperated control to help align a robot with field elements.

Much like with heading stabilization, this is often accomplished with a PID loop - unlike with stabilization, however, the loop can only be closed on the heading. The following example code will turn the robot to face 90 degrees with a simple P loop:

Java

C++

Gyro gyro = new ADXRS450_Gyro(SPI.Port.kMXP);

// The gain for a simple P loop
double kP = 1;

// Initialize motor controllers and drive
Spark left1 = new Spark(0);
Spark left2 = new Spark(1);

Spark right1 = new Spark(2);
Spark right2 = new Spark(3);

SpeedControllerGroup leftMotors = new SpeedControllerGroup(left1, left2);
SpeedControllerGroup rightMotors = new SpeedControllerGroup(right1, right2);

DifferentialDrive drive = new DifferentialDrive(leftMotors, rightMotors);

@Override
public void autonomousPeriodic() {
 // Find the heading error; setpoint is 90
 double error = 90 - gyro.getAngle();

 // Turns the robot to face the desired direction
 drive.tankDrive(kP * error, kP * error);
}

frc::ADXRS450_Gyro gyro{frc::SPI::Port::kMXP};

// The gain for a simple P loop
double kP = 1;

// Initialize motor controllers and drive
frc::Spark left1{0};
frc::Spark left2{1};
frc::Spark right1{2};
frc::Spark right2{3};

frc::SpeedControllerGroup leftMotors{left1, left2};
frc::SpeedControllerGroup rightMotors{right1, right2};

frc::DifferentialDrive drive{leftMotors, rightMotors};

void Robot::AutonomousPeriodic() {
 // Find the heading error; setpoint is 90
 double error = 90 - gyro.GetAngle();

 // Turns the robot to face the desired direction
 drive.TankDrive(kP * error, kP * error);
}

As before, more-advanced implementations can use more-complicated control loops.

Note

Turn-to-angle loops can be tricky to tune correctly due to static friction in the drivetrain, especially if a simple P loop is used. There are a number of ways to account for this; one of the most common/effective is to add a “minimum output” to the output of the control loop. Another effective strategy is to cascade to well-tuned velocity controllers on each side of the drive.

 Ultrasonics - Software

Ultrasonics - Software

Note

This section covers ultrasonics in software. For a hardware guide to ultrasonics, see Ultrasonics - Hardware.

An ultrasonic sensor is commonly used to measure distance to an object using high-frequency sound. Generally, ultrasonics measure the distance to the closest object within their “field of view.”

There are two primary types of ultrasonics supported natively by WPILib:

	Ping-response ultrasonics

	Analog ultrasonics

Ping-response ultrasonics

The Ultrasonic class (Java [https://first.wpi.edu/FRC/roborio/release/docs/java/edu/wpi/first/wpilibj/Ultrasonic.html], C++ [https://first.wpi.edu/FRC/roborio/release/docs/cpp/classfrc_1_1Ultrasonic.html]) provides support for ping-response ultrasonics. As ping-response ultrasonics (per the: name) require separate pins for both spending the ping and measuring the response, users must specify DIO pin numbers for both output and input when constructing an Ultrasonic instance:

Java

C++

// Creates a ping-response Ultrasonic object on DIO 1 and 2.
Ultrasonic ultrasonic = new Ultrasonic(1, 2);

// Creates a ping-response Ultrasonic object on DIO 1 and 2.
frc::Ultrasonic ultrasonic{1, 2};

It is highly recommended to use ping-response ultrasonics in “automatic mode,” as this will allow WPILib to ensure that multiple sensors do not interfere with each other:

Java

C++

// Starts the ultrasonic sensor running in automatic mode
ultrasonic.setAutomaticMode(true);

// Starts the ultrasonic sensor running in automatic mode
ultrasonic.SetAutomaticMode(true);

Analog ultrasonics

Some ultrasonic sensors simply return an analog voltage corresponding to the measured distance. These sensors can may simply be used with the AnalogPotentiometer class.

Third-party ultrasonics

Other ultrasonic sensors offered by third-parties may use more complicated communications protocols (such as I2C or SPI). WPILib does not provide native support for any such ultrasonics; they will typically be controlled with vendor libraries.

Using ultrasonics in code

Ultrasonic sensors are very useful for determining spacing during autonomous routines. For example, the following code will drive the robot forward until the ultrasonic measures a distance of 12 inches to the nearest object, and then stop:

Java

C++

// Creates a ping-response Ultrasonic object on DIO 1 and 2.
Ultrasonic ultrasonic = new Ultrasonic(1, 2);

// Initialize motor controllers and drive
Spark left1 new Spark(0);
Spark left2 = new Spark(1);

Spark right1 = new Spark(2);
Spark right2 = new Spark(3);

SpeedControllerGroup leftMotors = new SpeedControllerGroup(left1, left2);
SpeedControllerGroup rightMotors = new SpeedControllerGroup(right1, right2);

DifferentialDrive drive = new DifferentialDrive(leftMotors, rightMotors);

@Override
public void robotInit() {
 // Start the ultrasonic in automatic mode
 ultrasonic.setAutomaticMode(true);
}

@Override
public void autonomousPeriodic() {
 if(ultrasonic.GetRangeInches() > 12) {
 drive.tankDrive(.5, .5);
 }
 else {
 drive.tankDrive(0, 0);
 }
}

// Creates a ping-response Ultrasonic object on DIO 1 and 2.
frc::Ultrasonic ultrasonic{1, 2};

// Initialize motor controllers and drive
frc::Spark left1{0};
frc::Spark left2{1};
frc::Spark right1{2};
frc::Spark right2{3};

frc::SpeedControllerGroup leftMotors{left1, left2};
frc::SpeedControllerGroup rightMotors{right1, right2};

frc::DifferentialDrive drive{leftMotors, rightMotors};

void Robot::RobotInit() {
 // Start the ultrasonic in automatic mode
 ultrasonic.SetAutomaticMode(true);
}

void Robot:AutonomousPeriodic() {
 if(ultrasonic.GetRangeInches() > 12) {
 drive.TankDrive(.5, .5);
 }
 else {
 drive.TankDrive(0, 0);
 }
}

Additionally, ping-response ultrasonics can be sent to Shuffleboard, where they will be displayed with their own widgets:

Java

C++

// Creates a ping-response Ultrasonic object on DIO 1 and 2.
Ultrasonic ultrasonic = new Ultrasonic(1, 2);

public void robotInit() {
 // Places a the ultrasonic on the dashboard
 Shuffleboard.getTab("Example tab").add(ultrasonic);
}

// Creates a ping-response Ultrasonic object on DIO 1 and 2.
frc::Ultrasonic ultrasonic{1, 2};

void Robot::RobotInit() {
 // Places the ultrasonic on the dashboard
 frc::Shuffleboard.GetTab("Example tab").Add(ultrasonic);
}

 Contadores

Contadores

[image: Counters]

A Counter classe (Java [https://first.wpi.edu/FRC/roborio/release/docs/java/edu/wpi/first/wpilibj/Counter.html], C++ [https://first.wpi.edu/FRC/roborio/release/docs/cpp/classfrc_1_1Counter.html]) é uma classe versátil que permite a contagem de bordas de pulso em uma entrada digital. Counter é usado como um componente em várias classes WPILib mais complicadas (como Encoder e Ultrasonic), mas também é bastante útil por si só.

Note

There are a total of 8 counter units in the roboRIO FPGA, meaning no more than 8 Counter objects may be instantiated at any one time, including those contained as resources in other WPILib objects. For detailed information on when a Counter may be used by another object, refer to the official API documentation.

Configuring a counter

The Counter class can be configured in a number of ways to provide differing functionalities.

Counter Modes

The Counter object may be configured to operate in one of four different modes:

	Two-pulse mode: Counts up and down based on the edges of two different channels.

	Semi-period mode: Measures the duration of a pulse on a single channel.

	Pulse-length mode: Counts up and down based on the edges of one channel, with the direction determined by the duration of the pulse on that channel.

	External direction mode: Counts up and down based on the edges of one channel, with a separate channel specifying the direction.

Note

In all modes except semi-period mode, the counter can be configured to increment either once per edge (2X decoding), or once per pulse (1X decoding). By default, counters are set to two-pulse mode, if only one channel is specified, the counter will only count up.

Two-pulse mode

In two-pulse mode, the Counter will count up for every edge/pulse on the specified “up channel,” and down for every edge/pulse on the specified “down channel.” A counter can be initialized in two-pulse with the following code:

Java

C++

// Create a new Counter object in two-pulse mode
Counter counter = new Counter(Counter.Mode.k2Pulse);

@Override
public void robotInit() {
 // Set up the input channels for the counter
 counter.setUpSource(1);
 counter.setDownSource(2);

 // Set the decoding type to 2X
 counter.setUpSourceEdge(true, true);
 counter.setDownSourceEdge(true, true);
}

// Create a new Counter object in two-pulse mode
frc::Counter counter{frc::Counter::Mode::k2Pulse};

void Robot::RobotInit() {
 // Set up the input channels for the counter
 counter.SetUpSource(1);
 counter.SetDownSource(2);

 // Set the decoding type to 2X
 counter.SetUpSourceEdge(true, true);
 counter.SetDownSourceEdge(true, true);

Semi-period mode

In semi-period mode, the Counter will count the duration of the pulses on a channel, either from a rising edge to the next falling edge, or from a falling edge to the next rising edge. A counter can be initialized in semi-period mode with the following code:

Java

C++

// Create a new Counter object in two-pulse mode
Counter counter = new Counter(Counter.Mode.kSemiperiod);

@Override
public void robotInit() {
 // Set up the input channel for the counter
 counter.setUpSource(1);

 // Set the encoder to count pulse duration from rising edge to falling edge
 counter.setSemiPeriodMode(true);
}

// Create a new Counter object in two-pulse mode
frc::Counter counter{frc::Counter::Mode::kSemiperiod};

void Robot() {
 // Set up the input channel for the counter
 counter.SetUpSource(1);

 // Set the encoder to count pulse duration from rising edge to falling edge
 counter.SetSemiPeriodMode(true);

To get the pulse width, call the getPeriod() method:

Java

C++

// Return the measured pulse width in seconds
counter.GetPeriod();

// Return the measured pulse width in seconds
counter.getPeriod();

Pulse-length mode

In pulse-length mode, the counter will count either up or down depending on the length of the pulse. A pulse below the specified threshold time will be interpreted as a forward count and a pulse above the threshold is a reverse count. This is useful for some gear tooth sensors which encode direction in this manner. A counter can be initialized in this mode as follows:

Java

C++

// Create a new Counter object in two-pulse mode
Counter counter = new Counter(Counter.Mode.kPulseLength);

@Override
public void robotInit() {
 // Set up the input channel for the counter
 counter.setUpSource(1);

 // Set the decoding type to 2X
 counter.setUpSourceEdge(true, true);

 // Set the counter to count down if the pulses are longer than .05 seconds
 counter.SetPulseLengthMode(.05)
}

// Create a new Counter object in two-pulse mode
frc::Counter counter{frc::Counter::Mode::kPulseLength};

void Robot::RobotInit() {
 // Set up the input channel for the counter
 counter.SetUpSource(1);

 // Set the decoding type to 2X
 counter.SetUpSourceEdge(true, true);

 // Set the counter to count down if the pulses are longer than .05 seconds
 counter.setPulseLengthMode(.05)

External direction mode

In external direction mode, the counter counts either up or down depending on the level on the second channel. If the direction source is low, the counter will increase, if the direction source is high, the counter will decrease (to reverse this, see the next section). A counter can be initialized in this mode as follows:

Java

C++

// Create a new Counter object in two-pulse mode
Counter counter = new Counter(Counter.Mode.kExternalDirection);

@Override
public void robotInit() {
 // Set up the input channels for the counter
 counter.setUpSource(1);
 counter.setDownSource(2);

 // Set the decoding type to 2X
 counter.setUpSourceEdge(true, true);
}

// Create a new Counter object in two-pulse mode
frc::Counter counter{frc::Counter::Mode::kExternalDirection};

void RobotInit() {
 // Set up the input channels for the counter
 counter.SetUpSource(1);
 counter.SetDownSource(2);

 // Set the decoding type to 2X
 counter.SetUpSourceEdge(true, true);

Configuring counter parameters

Note

The Counter class does not make any assumptions about units of distance; it will return values in whatever units were used to calculate the distance-per-pulse value. Users thus have complete control over the distance units used. However, units of time are always in seconds.

Note

The number of pulses used in the distance-per-pulse calculation does not depend on the decoding type - each “pulse” should always be considered to be a full cycle (rising and falling).

Apart from the mode-specific configurations, the Counter class offers a number of additional configuration methods:

Java

C++

// Configures the counter to return a distance of 4 for every 256 pulses
// Also changes the units of getRate
counter.setDistancePerPulse(4./256.);

// Configures the counter to consider itself stopped after .1 seconds
counter.setMaxPeriod(.1);

// Configures the counter to consider itself stopped when its rate is below 10
counter.setMinRate(10);

// Reverses the direction of the counter
counter.setReverseDirection(true);

// Configures an counter to average its period measurement over 5 samples
// Can be between 1 and 127 samples
counter.setSamplesToAverage(5);

// Configures the counter to return a distance of 4 for every 256 pulses
// Also changes the units of getRate
counter.SetDistancePerPulse(4./256.);

// Configures the counter to consider itself stopped after .1 seconds
counter.SetMaxPeriod(.1);

// Configures the counter to consider itself stopped when its rate is below 10
counter.SetMinRate(10);

// Reverses the direction of the counter
counter.SetReverseDirection(true);

// Configures an counter to average its period measurement over 5 samples
// Can be between 1 and 127 samples
counter.SetSamplesToAverage(5);

Reading information from counters

Regardless of mode, there is some information that the Counter class always exposes to users:

Count

Users can obtain the current count with the get() method:

Java

C++

// returns the current count
counter.get();

// returns the current count
counter.Get();

Distance

Note

Counters measure relative distance, not absolute; the distance value returned will depend on the position of the encoder when the robot was turned on or the encoder value was last reset.

If the distance per pulse has been configured, users can obtain the total distance traveled by the counted sensor with the getDistance() method:

Java

C++

// returns the current distance
counter.getDistance();

// returns the current distance
counter.GetDistance();

Rate

Note

Units of time for the Counter class are always in seconds.

Users can obtain the current rate of change of the counter with the getRate() method:

Java

C++

// Gets the current rate of the counter
counter.getRate();

// Gets the current rate of the counter
counter.GetRate();

Stopped

Users can obtain whether the counter is stationary with the getStopped() method:

Java

C++

// Gets whether the counter is stopped
counter.getStopped();

// Gets whether the counter is stopped
counter.GetStopped();

Direction

Users can obtain the direction in which the counter last moved with the getDirection() method:

Java

C++

// Gets the last direction in which the counter moved
counter.getDirection();

// Gets the last direction in which the counter moved
counter.GetDirection();

Period

Note

In semi-period mode, this method returns the duration of the pulse, not of the period.

Users can obtain the duration (in seconds) of the most-recent period with the getPeriod() method:

Java

C++

// returns the current period in seconds
counter.getPeriod();

// returns the current period in seconds
counter.GetPeriod();

Resetting a counter

To reset a counter to a distance reading of zero, call the reset() method. This is useful for ensuring that the measured distance corresponds to the actual desired physical measurement.

Java

C++

// Resets the encoder to read a distance of zero
counter.reset();

// Resets the encoder to read a distance of zero
counter.Reset();

Using counters in code

Counters are useful for a wide variety of robot applications - but since the Counter class is so varied, it is difficult to provide a good summary of them here. Many of these applications overlap with the Encoder class - a simple counter is often a cheaper alternative to a quadrature encoder. For a summary of potential uses for encoders in code, see Encoders - Software.

 Encoders - Software

Encoders - Software

Note

This section covers encoders in software. For a hardware guide to encoders, see Encoders - Hardware.

[image: Encoding Direction]

Encoders are devices used to measure motion (usually, the rotation of a shaft). The encoders used in FRC are known as “quadrature encoders.” These encoders produce square-wave signals on two channels that are a quarter-period out-of-phase (hence the term, “quadrature”). The pulses are used to measure the rotation, and the direction of motion can be determined from which channel “leads” the other.

[image: Encoder Modules]

The FPGA handles encoders either through a counter module or an encoder module, depending on the decoding type - the choice is handled automatically by WPILib. The FPGA contains 8 encoder modules.

The Encoder class

WPILib provides support for encoders through the Encoder class (Java [https://first.wpi.edu/FRC/roborio/release/docs/java/edu/wpi/first/wpilibj/Encoder.html], C++ [https://first.wpi.edu/FRC/roborio/release/docs/cpp/classfrc_1_1Encoder.html]). This class provides a simple API for configuring and reading data from encoders.

Initializing an encoder

An encoder can be instantiated as follows:

Java

C++

// Initializes an encoder on DIO pins 0 and 1
// Defaults to 4X decoding and non-inverted
Encoder encoder = new Encoder(0, 1);

// Initializes an encoder on DIO pins 0 and 1
// Defaults to 4X decoding and non-inverted
frc::Encoder encoder{0, 1};

Decoding type

The WPILib Encoder class can decode encoder signals in three different modes:

	1X Decoding: Increments the distance for every complete period of the encoder signal (once per four edges).

	2X Decoding: Increments the distance for every half-period of the encoder signal (once per two edges).

	4X Decoding: Increments the distance for every edge of the encoder signal (four times per period).

4X decoding offers the greatest precision, but at the potential cost of increased “jitter” in rate measurements. To use a different decoding type, use the following constructor:

Java

C++

// Initializes an encoder on DIO pins 0 and 1
// 2X encoding and non-inverted
Encoder encoder = new Encoder(0, 1, false, Encoder.EncodingType.k2X);

// Initializes an encoder on DIO pins 0 and 1
// 2X encoding and non-inverted
frc::Encoder encoder{0, 1, false, frc::Encoder::EncodingType::k2X};

Configuring encoder parameters

Note

The Encoder class does not make any assumptions about units of distance; it will return values in whatever units were used to calculate the distance-per-pulse value. Users thus have complete control over the distance units used. However, units of time are always in seconds.

Note

The number of pulses used in the distance-per-pulse calculation does not depend on the decoding type - each “pulse” should always be considered to be a full cycle (four edges).

The Encoder class offers a number of configuration methods:

Java

C++

// Configures the encoder to return a distance of 4 for every 256 pulses
// Also changes the units of getRate
encoder.setDistancePerPulse(4./256.);

// Configures the encoder to consider itself stopped after .1 seconds
encoder.setMaxPeriod(.1);

// Configures the encoder to consider itself stopped when its rate is below 10
encoder.setMinRate(10);

// Reverses the direction of the encoder
encoder.setReverseDirection(true);

// Configures an encoder to average its period measurement over 5 samples
// Can be between 1 and 127 samples
encoder.setSamplesToAverage(5);

// Configures the encoder to return a distance of 4 for every 256 pulses
// Also changes the units of getRate
encoder.SetDistancePerPulse(4./256.);

// Configures the encoder to consider itself stopped after .1 seconds
encoder.SetMaxPeriod(.1);

// Configures the encoder to consider itself stopped when its rate is below 10
encoder.SetMinRate(10);

// Reverses the direction of the encoder
encoder.SetReverseDirection(true);

// Configures an encoder to average its period measurement over 5 samples
// Can be between 1 and 127 samples
encoder.SetSamplesToAverage(5);

Reading information from encoders

The Encoder class provides a wealth of information to the user about the motion of the encoder.

Distance

Note

Quadrature encoders measure relative distance, not absolute; the distance value returned will depend on the position of the encoder when the robot was turned on or the encoder value was last reset.

Users can obtain the total distance traveled by the encoder with the getDistance() method:

Java

C++

// Configures an encoder to return a distance of 4 for every 256 pulses
encoder.setDistancePerPulse(4./256.);

// Configures an encoder to return a distance of 4 for every 256 pulses
encoder.SetDistancePerPulse(4./256.);

Rate

Note

Units of time for the Encoder class are always in seconds.

Users can obtain the current rate of change of the encoder with the getRate() method:

Java

C++

// Gets the current rate of the encoder
encoder.getRate();

// Gets the current rate of the encoder
encoder.GetRate();

Stopped

Users can obtain whether the encoder is stationary with the getStopped() method:

Java

C++

// Gets whether the encoder is stopped
encoder.getStopped();

// Gets whether the encoder is stopped
encoder.GetStopped();

Direction

Users can obtain the direction in which the encoder last moved with the getDirection() method:

Java

C++

// Gets the last direction in which the encoder moved
encoder.getDirection();

// Gets the last direction in which the encoder moved
encoder.GetDirection();

Period

Users can obtain the period of the encoder pulses (in seconds) with the getPeriod() method:

Java

C++

// Gets the current period of the encoder
encoder.getPeriod();

// Gets the current period of the encoder
encoder.GetPeriod();

Resetting an encoder

To reset an encoder to a distance reading of zero, call the reset() method. This is useful for ensuring that the measured distance corresponds to the actual desired physical measurement, and is often called during a homing routine:

Java

C++

// Resets the encoder to read a distance of zero
encoder.reset();

// Resets the encoder to read a distance of zero
encoder.Reset();

Using encoders in code

Encoders are some of the most useful sensors in FRC; they are very nearly a requirement to make a robot capable of nontrivially-automated actuations and movement. The potential applications of encoders in robot code are too numerous to summarize fully here, but a few basic examples are provided below:

Driving to a distance

Encoders can be used on a robot drive to create a simple “drive to distance” routine. This is very useful for robot autonomy:

Java

C++

// Creates an encoder on DIO ports 0 and 1
Encoder encoder = new Encoder(0, 1);

// Initialize motor controllers and drive
Spark left1 new Spark(0);
Spark left2 = new Spark(1);

Spark right1 = new Spark(2);
Spark right2 = new Spark(3);

SpeedControllerGroup leftMotors = new SpeedControllerGroup(left1, left2);
SpeedControllerGroup rightMotors = new SpeedControllerGroup(right1, right2);

DifferentialDrive drive = new DifferentialDrive(leftMotors, rightMotors);

@Override
public void robotInit() {
 // Configures the encoder's distance-per-pulse
 // The robot moves forward 1 foot per encoder rotation
 // There are 256 pulses per encoder rotation
 encoder.setDistancePerPulse(1./256.);
}

@Override
public void autonomousPeriodic() {
 // Drives forward at half speed until the robot has moved 5 feet, then stops:
 if(encoder.getDistance < 5) {
 drive.tankDrive(.5, .5);
 } else {
 drive.tankDrive(0, 0);
 }
}

// Creates an encoder on DIO ports 0 and 1.
frc::Encoder encoder{0, 1};

// Initialize motor controllers and drive
frc::Spark left1{0};
frc::Spark left2{1};
frc::Spark right1{2};
frc::Spark right2{3};

frc::SpeedControllerGroup leftMotors{left1, left2};
frc::SpeedControllerGroup rightMotors{right1, right2};

frc::DifferentialDrive drive{leftMotors, rightMotors};

void Robot::RobotInit() {
 // Configures the encoder's distance-per-pulse
 // The robot moves forward 1 foot per encoder rotation
 // There are 256 pulses per encoder rotation
 encoder.SetDistancePerPulse(1./256.);
}

void Robot:AutonomousPeriodic() {
 // Drives forward at half speed until the robot has moved 5 feet, then stops:
 if(encoder.GetDistance < 5) {
 drive.TankDrive(.5, .5);
 } else {
 drive.TankDrive(0, 0);
 }
}

Stabilizing heading

Warning

Like with all control loops, users should be careful to ensure that the sensor direction and the turning direction are consistent. If they are not, the loop will be unstable and the robot will turn wildly.

Encoders can be used to ensure that a robot drives straight in a manner quite similar to how it is done with a gyroscope. A simple implementation with a P loop is given below:

Java

C++

// The encoders for the drive
Encoder leftEncoder = new Encoder(0,1);
Encoder rightEncoder = new Encoder(2,3);

// The gain for a simple P loop
double kP = 1;

// Initialize motor controllers and drive
Spark left1 = new Spark(0);
Spark left2 = new Spark(1);

Spark right1 = new Spark(2);
Spark right2 = new Spark(3);

SpeedControllerGroup leftMotors = new SpeedControllerGroup(left1, left2);
SpeedControllerGroup rightMotors = new SpeedControllerGroup(right1, right2);

DifferentialDrive drive = new DifferentialDrive(leftMotors, rightMotors);

@Override
public void autonomousInit() {
 // Configures the encoders' distance-per-pulse
 // The robot moves forward 1 foot per encoder rotation
 // There are 256 pulses per encoder rotation
 leftEncoder.setDistancePerPulse(1./256.);
 rightEncoder.setDistancePerPulse(1./256.);
}

@Override
public void autonomousPeriodic() {
 // Assuming no wheel slip, the difference in encoder distances is proportional to the heading error
 double error = leftEncoder.getDistance() - rightEncoder.getDistance();

 // Drives forward continuously at half speed, using the encoders to stabilize the heading
 drive.tankDrive(.5 + kP * error, .5 - kP * error);
}

// The encoders for the drive
frc::Encoder leftEncoder{0,1};
frc::Encoder rightEncoder{2,3};

// The gain for a simple P loop
double kP = 1;

// Initialize motor controllers and drive
frc::Spark left1{0};
frc::Spark left2{1};
frc::Spark right1{2};
frc::Spark right2{3};

frc::SpeedControllerGroup leftMotors{left1, left2};
frc::SpeedControllerGroup rightMotors{right1, right2};

frc::DifferentialDrive drive{leftMotors, rightMotors};

void Robot::AutonomousInit() {
 // Configures the encoders' distance-per-pulse
 // The robot moves forward 1 foot per encoder rotation
 // There are 256 pulses per encoder rotation
 leftEncoder.SetDistancePerPulse(1./256.);
 rightEncoder.SetDistancePerPulse(1./256.);
}

void Robot::AutonomousPeriodic() {
 // Assuming no wheel slip, the difference in encoder distances is proportional to the heading error
 double error = leftEncoder.GetDistance() - rightEncoder.GetDistance();

 // Drives forward continuously at half speed, using the encoders to stabilize the heading
 drive.TankDrive(.5 + kP * error, .5 - kP * error);
}

More-advanced implementations can use more-complicated control loops. Closing a control loop on the encoder difference is roughly analogous to closing it on the heading error, and so PD loops are particularly effective.

PID Control

Encoders are particularly useful as inputs to PID controllers (the heading stabilization example above is a simple P loop).

Homing an encodered mechanism

Since encoders measure relative distance, it is often important to ensure that their “zero-point” is in the right place. A typical way to do this is a “homing routine,” in which a mechanism is moved until it hits a known position (usually accomplished with a limit switch), or “home,” and then the encoder is reset. The following code provides a basic example:

Java

C++

Encoder encoder = new Encoder(0, 1);

Spark spark = new Spark(0);

// Limit switch on DIO 2
DigitalInput limit = new DigitalInput(2);

public void autonomousPeriodic() {
 // Runs the motor backwards at half speed until the limit switch is pressed
 // then turn off the motor and reset the encoder
 if(!limit.get()) {
 spark.set(-.5);
 } else {
 spark.set(0);
 encoder.reset();
 }
}

frc::Encoder encoder{0,1};

frc::Spark spark{0};

// Limit switch on DIO 2
frc::DigitalInput limit{2};

void AutonomousPeriodic() {
 // Runs the motor backwards at half speed until the limit switch is pressed
 // then turn off the motor and reset the encoder
 if(!limit.Get()) {
 spark.Set(-.5);
 } else {
 spark.Set(0);
 encoder.Reset();
 }
}

 Entradas analógicas - Software

Entradas analógicas - Software

Note

Esta seção cobre entradas analógicas no software. Para obter um guia de hardware para entradas analógicas, consulte Analog Inputs - Hardware.

O FPGA do roboRIO suporta até 8 canais de entrada analógica que podem ser usados ​​para ler o valor de uma tensão analógica de um sensor. As entradas analógicas podem ser usadas para qualquer sensor que produz uma tensão simples.

As entradas analógicas do FPGA, por padrão, retornam um número inteiro de 12 bits proporcional à tensão, de 0 a 5 volts.

Entradas analógicas - explicação

Note

Geralmente, é mais conveniente usar a explicação de invólucro de Analog Potentiometers do que usar AnalogInput diretamente, pois suporta o dimensionamento para unidades significativas.

O suporte para leitura das tensões nas entradas analógicas do FPGA é fornecido através da AnalogInput explicação (Java [https://first.wpi.edu/FRC/roborio/release/docs/java/edu/wpi/first/wpilibj/AnalogInput.html], C++ [https://first.wpi.edu/FRC/roborio/release/docs/cpp/classfrc_1_1AnalogInput.html]).

Sobre-amostragem e Média

[image: Oversampling and Averaging]

Os módulos de entrada analógica do FPGA suportam tanto a sobre amostragem quanto a média. Esses comportamentos são altamente semelhantes, mas diferem em alguns aspectos importantes. Ambos podem ser usados ​​ao mesmo tempo.

Sobre-amostragem

Quando a superamostragem está ativada, o FPGA adiciona várias amostras consecutivas e retorna o valor acumulado. Os usuários podem especificar o número de bits de oversampling - para nbits de oversampling, o número de amostras somadas é 2 ~ {n}.

Média

A média se comporta de maneira semelhante à superamostragem, exceto que os valores acumulados são divididos pelo número de amostras, para que a escala dos valores retornados não seja alterada. Isso geralmente é mais conveniente, mas ocasionalmente o erro adicional de arredondamento introduzido pelo arredondamento é indesejável.

Note

Quando a sobre amostragem e a média são usadas ao mesmo tempo, a sobre amostragem é aplicada primeiro e , em seguida, os valores sobre amostragem são calculados. Portanto, a superamostragem de 2 bits e a média de 2 bits usadas ao mesmo tempo aumentam a escala dos valores retornados em aproximadamente um fator de 2 e diminuem a taxa de atualização em aproximadamente um fator de 4.

Lendo valores de uma entrada analógica

Os valores podem ser lidos em um AnalogInput com um dos quatro métodos diferentes:

Obter valor

O getValue método retorna o valor medido instantâneo bruto da entrada analógica, sem aplicar nenhuma calibração e ignorar as configurações de superamostragem e média. O valor retornado é um número inteiro.

Obter voltagem

O getVoltage método retorna a tensão instantânea medida da entrada analógica. As configurações de superamostragem e média são ignoradas, mas o valor é redimensionado para representar uma tensão. O valor retornado é um dobro.

Obter valor médio

O getAverageValue método retorna o valor médio da entrada analógica. O valor não é redimensionado, mas a superamostragem e a média são aplicadas. O valor retornado é um número inteiro.

Obter voltagem média

O getAverageVoltage método retorna a tensão média da entrada analógica. Reescalonamento, superamostragem e média são todos aplicados. O valor retornado é um dobro.

Acumulador

Note

Atualmente, os métodos do acumulador não suportam o retorno de um valor em unidades de volts - o valor retornado sempre será um número inteiro (especificamente, a long).

Os canais de entrada analógica 0 e 1 suportam adicionalmente um acumulador, que integra (soma) o sinal indefinidamente, de modo que o valor retornado seja a soma de todos os valores medidos passados. Sobre-amostragem e média são aplicadas antes da acumulação.

Obtendo contagem e valor sincronizados

Às vezes, é necessariamente obter medições correspondentes da contagem e do valor. Isso pode ser feito usando o getAccumulatorOutput método.

Usando entradas analógicas no código

A AnalogInput explicação pode ser usada para escrever código para uma ampla variedade de sensores (incluindo potenciômetros, acelerômetros, giroscópios, ultrassônicos e outros) que retornam seus dados como uma tensão analógica. No entanto, se possível, é quase sempre mais conveniente usar uma das outras classes WPILib existentes que manipula o código de nível inferior (lendo as tensões analógicas e convertendo-as em unidades significativas) para você. Os usuários devem usar diretamente apenas AnalogInput como “último recurso”.

Assim, para exemplos de como usar efetivamente sensores analógicos no código, os usuários devem consultar as outras páginas deste capítulo que tratam de explicações mais específicas.

 Potenciômetros analógicos - Software

Potenciômetros analógicos - Software

Note

Esta seção aborda potenciômetros analógicos em software. Para obter um guia de hardware para potenciômetros analógicos, consulte Analog Potentiometers - Hardware.

Potenciômetros são resistores variáveis ​​que permitem converter informações sobre a posição em um sinal de tensão analógico. Esse sinal pode ser lido pelo roboRIO para controlar qualquer dispositivo conectado ao potenciômetro.

Embora seja possível ler informações de um potenciômetro diretamente com um Entradas analógicas - Software, o WPILib fornece uma AnalogPotentiometer explicação (Java [https://first.wpi.edu/FRC/roborio/release/docs/java/edu/wpi/first/wpilibj/AnalogPotentiometer.html], C++ [https://first.wpi.edu/FRC/roborio/release/docs/cpp/classfrc_1_1AnalogPotentiometer.html]) que lida com a redimensionamento dos valores em unidades significativas para o usuário. É altamente recomendável usar esta explicação.

De fato, o AnalogPotentiometer nome é um nome impróprio - essa classe deve ser usada para a grande maioria dos sensores que retornam seu sinal como uma tensão analógica simples, em escala linear.

Explicação dos Potenciômetros analógicos

Note

Os parâmetros “faixa completa” ou “escala” no AnalogPotentiometer construtor são fatores de escala de um intervalo de 0-1 ao intervalo real, não de 0-5. Ou seja, eles representam uma escala fracionária nativa, em vez de uma escala de tensão.

Personalizando o Potenciômetro analógico subjacente

Note

Se o usuário alterar a escala da AnalogInput com superamostragem, isso deve ser refletido na configuração de escala passada para o

Usando potenciômetros analógicos no código

Os sensores analógicos podem ser usados ​​no código da mesma maneira que outros sensores que medem a mesma coisa. Se o sensor analógico for um potenciômetro medindo um ângulo do braço, ele poderá ser usado de maneira semelhante a um encoder. Se for um sensor ultrassônico, pode ser usado de maneira semelhante a outros ultrasonics.

É muito importante ter em mente que os potenciômetros físicos reais geralmente têm uma amplitude de movimento limitada. As salvaguardas devem estar presentes tanto no mecanismo físico quanto no código, para garantir que o mecanismo não quebre o sensor passando seu lance máximo.

 Digital Inputs - Software

Digital Inputs - Software

Note

This section covers digital inputs in software. For a hardware guide to digital inputs, see Digital Inputs - Hardware.

The roboRIO’s FPGA supports up to 26 digital inputs. 10 of these are made available through the built-in DIO ports on the RIO itself, while the other 16 are available through the MXP breakout port.

Digital inputs read one of two states - “high” or “low.” By default, the built-in ports on the RIO will read “high” due to internal pull-up resistors (for more information, see Digital Inputs - Hardware). Accordingly, digital inputs are most-commonly used with switches of some sort. Support for this usage is provided through the DigitalInput class (Java [https://first.wpi.edu/FRC/roborio/release/docs/java/edu/wpi/first/wpilibj/DigitalInput.html], C++ [https://first.wpi.edu/FRC/roborio/release/docs/cpp/classfrc_1_1DigitalInput.html]).

The DigitalInput class

A DigitalInput can be initialized as follows:

Java

C++

// Initializes a DigitalInput on DIO 0
DigitalInput input = new DigitalInput(0);

// Initializes a DigitalInput on DIO 0
frc::DigitalInput input{0};

Reading the value of the DigitalInput

The state of the DigitalInput can be polled with the get method:

Java

C++

// Gets the value of the digital input. Returns true if the circuit is open.
input.get();

// Gets the value of the digital input. Returns true if the circuit is open.
input.Get();

Creating a DigitalInput from an AnalogInput

Note

An AnalogTrigger constructed with a port number argument can share that analog port with a separate AnalogInput, but two AnalogInput objects may not share the same port.

Sometimes, it is desirable to use an analog input as a digital input. This can be easily achieved using the AnalogTrigger class (Java [https://first.wpi.edu/FRC/roborio/release/docs/java/edu/wpi/first/wpilibj/AnalogTrigger.html], C++ [https://first.wpi.edu/FRC/roborio/release/docs/cpp/classfrc_1_1AnalogTrigger.html]).

An AnalogTrigger may be initialized as follows. As with AnalogPotentiometer, an AnalogInput may be passed explicitly if the user wishes to customize the sampling settings:

Java

C++

// Initializes an AnalogTrigger on port 0
AnalogTrigger trigger0 = new AnalogTrigger(0);

// Initializes an AnalogInput on port 1 and enables 2-bit oversampling
AnalogInput input = new AnalogInput(1);
input.setAverageBits(2);

// Initializes an AnalogTrigger using the above input
AnalogTrigger trigger1 = new AnalogTrigger(input);

// Initializes an AnalogTrigger on port 0
frc::AnalogTrigger trigger0{0};

// Initializes an AnalogInput on port 1 and enables 2-bit oversampling
frc::AnalogInput input{1};
input.SetAverageBits(2);

// Initializes an AnalogTrigger using the above input
frc::AnalogTrigger trigger1{input};

Setting the trigger points

Note

For details on the scaling of “raw” AnalogInput values, see Entradas analógicas - Software.

To convert the analog signal to a digital one, it is necessary to specify at what values the trigger will enable and disable. These values may be different to avoid “dithering” around the transition point:

Java

C++

// Sets the trigger to enable at a raw value of 3500, and disable at a value of 1000
trigger.setLimitsRaw(1000, 3500);

// Sets the trigger to enable at a voltage of 4 volts, and disable at a value of 1.5 volts
trigger.setLimitsVoltage(1.5, 4);

// Sets the trigger to enable at a raw value of 3500, and disable at a value of 1000
trigger.SetLimitsRaw(1000, 3500);

// Sets the trigger to enable at a voltage of 4 volts, and disable at a value of 1.5 volts
trigger.SetLimitsVoltage(1.5, 4);

Using DigitalInputs in code

As almost all switches on the robot will be used through a DigitalInput, this class is extremely important for effective robot control.

Limiting the motion of a mechanism

Nearly all motorized mechanisms (such as arms and elevators) in FRC should be given some form of “limit switch” to prevent them from damaging themselves at the end of their range of motions. A short example is given below:

Java

C++

Spark spark = new Spark(0);

// Limit switch on DIO 2
DigitalInput limit = new DigitalInput(2);

public void autonomousPeriodic() {
 // Runs the motor forwards at half speed, unless the limit is pressed
 if(!limit.get()) {
 spark.set(.5);
 } else {
 spark.set(0);
 }
}

// Motor for the mechanism
frc::Spark spark{0};

// Limit switch on DIO 2
frc::DigitalInput limit{2};

void AutonomousPeriodic() {
 // Runs the motor forwards at half speed, unless the limit is pressed
 if(!limit.Get()) {
 spark.Set(.5);
 } else {
 spark.Set(0);
 }
}

Homing an encodered mechanism

Limit switches are very important for being able to “home” an encodered mechanism. For an example of this, see Homing an encodered mechanism.

 CAN Devices

CAN Devices

	Using CAN Devices

	Pneumatics Control Module

	Power Distribution Panel

	Third-Party CAN Devices

	FRC CAN Device Specifications

 Using CAN Devices

Using CAN Devices

CAN has many advantages over other methods of connection between the robot controller and peripheral devices.

	CAN connections are daisy-chained from device to device, which often results in much shorter wire runs than having to wire each device to the RIO itself.

	Much more data can be sent over a CAN connection than over a PWM connection - thus, CAN motor controllers are capable of a much more expansive feature-set than are PWM motor controllers.

	CAN is bi-directional, so CAN motor controllers can send data back to the RIO, again facilitating a more expansive feature-set than can be offered by PWM Controllers.

Supported CAN peripherals include:

	CAN speed controllers

	The Power Distribution Panel (PDP)

	The Pneumatics Control Module (PCM)

For instructions on wiring CAN devices, see the relevant section of the robot wiring guide.

CAN devices generally have their own WPILib classes. The following sections will describe the use of several of these classes.

 Pneumatics Control Module

Pneumatics Control Module

The Pneumatics Control Module (PCM) is a CAN-based device that provides complete control over the compressor and up to 8 solenoids per module. The PCM is integrated into WPILib through a series of classes that make it simple to use.

The closed loop control of the Compressor and Pressure switch is handled by the Compressor class (Java [https://first.wpi.edu/FRC/roborio/release/docs/java/edu/wpi/first/wpilibj/Compressor.html], C++ [https://first.wpi.edu/FRC/roborio/release/docs/cpp/classfrc_1_1Compressor.html]), and the Solenoids are handled by the Solenoid (Java [https://first.wpi.edu/FRC/roborio/release/docs/java/edu/wpi/first/wpilibj/Solenoid.html], C++ [https://first.wpi.edu/FRC/roborio/release/docs/cpp/classfrc_1_1Solenoid.html]) and DoubleSolenoid (Java [https://first.wpi.edu/FRC/roborio/release/docs/java/edu/wpi/first/wpilibj/DoubleSolenoid.html], C++ [https://first.wpi.edu/FRC/roborio/release/docs/cpp/classfrc_1_1DoubleSolenoid.html]) classes.

An additional PCM module can be used where the modules corresponding solenoids are differentiated by the module number in the constructors of the Solenoid and Compressor classes.

For more information on controlling the compressor, see Operating a Compressor for Pneumatics.

For more information on controlling solenoids, see Operating Pneumatic Cylinders.

 Power Distribution Panel

Power Distribution Panel

The Power Distribution Panel (PDP) can use its CAN connectivity to communicate a wealth of status information regarding the robot’s power use to the roboRIO, for use in user code. The PDP has the capability to report its current temperature, the bus voltage, the total robot current draw, the total robot energy use, and the individual current draw of each device power channel. These data can be used for a number of advanced control techniques, such as motor torque limiting and brownout avoidance.

Creating a PDP Object

To use the PDP, create an instance of the PowerDistributionPanel class (Java [https://first.wpi.edu/FRC/roborio/release/docs/java/edu/wpi/first/wpilibj/PowerDistributionPanel.html], C++ [https://first.wpi.edu/FRC/roborio/release/docs/cpp/classfrc_1_1PowerDistributionPanel.html]):

C++

Java

PowerDistributionPanel examplePDP{0};

PowerDistributionPanel examplePDP = new PowerDistributionPanel(0);

Note: it is not necessary to create a PowerDistributionPanel object unless you need to read values from it. The board will work and supply power on all the channels even if the object is never created.

Warning

To enable voltage and current logging in the Driver Station, the CAN ID for the PDP must be 0.

Reading the Bus Voltage

Java

C++

examplePDP.getVoltage();

examplePDP.GetVoltage();

Monitoring the bus voltage can be useful for (among other things) detecting when the robot is near a brownout, so that action can be taken to avoid brownout in a controlled manner.

Reading the Temperature

Java

C++

examplePDP.getTemperature();

examplePDP.GetTemperature();

Monitoring the temperature can be useful for detecting if the robot has been drawing too much power and needs to be shut down for a while, or if there is a short or other wiring problem.

Reading the Total Current and Energy

Java

C++

examplePDP.getTotalCurrent();
examplePDP.getTotalEnergy();

examplePDP.GetTotalCurrent();
examplePDP.GetTotalEnergy();

Monitoring the total current and total energy (the total energy is simply the total current multiplied by the bus voltage) can be useful for controlling how much power is being drawn from the battery, both for preventing brownouts and ensuring that mechanisms have sufficient power available to perform the actions required.

Reading Individual Channel Currents

The PDP also allows users to monitor the current drawn by the individual device power channels. For example, to read the current on channel 0:

Java

C++

examplePDP.getCurrent(0);

examplePDP.GetCurrent(0);

Monitoring individual device current draws can be useful for detecting shorts or stalled motors.

 Third-Party CAN Devices

Third-Party CAN Devices

A number of FRC vendors offer their own CAN peripherals. As CAN devices
offer expansive feature-sets, vendor CAN devices require similarly
expansive code libraries to operate. As a result, these libraries are
not maintained as an official part of WPILib, but are instead maintained
by the vendors themselves. For a guide to installing third-party
libraries, see 3rd Party Libraries

A list of common third-party CAN devices from various vendors, along with links to corresponding external documentation, is provided below:

Cross-the-Road Electronics

Cross-the-Road Electronics (CTRE) offers several CAN peripherals with external libraries:

CTRE Motor Controllers

	Talon SRX

	API Documentation (Java [https://www.ctr-electronics.com/downloads/api/java/html/classcom_1_1ctre_1_1phoenix_1_1motorcontrol_1_1can_1_1_talon_s_r_x.html], C++ [https://www.ctr-electronics.com/downloads/api/cpp/html/classctre_1_1phoenix_1_1motorcontrol_1_1can_1_1_talon_s_r_x.html])

	Technical Manual [https://www.ctr-electronics.com/Talon%20SRX%20User's%20Guide.pdf]

	Victor SPX

	API Documentation (Java [https://www.ctr-electronics.com/downloads/api/java/html/classcom_1_1ctre_1_1phoenix_1_1motorcontrol_1_1can_1_1_victor_s_p_x.html], C++ [https://www.ctr-electronics.com/downloads/api/cpp/html/classctre_1_1phoenix_1_1motorcontrol_1_1can_1_1_victor_s_p_x.html])

	Technical Manual [https://www.ctr-electronics.com/downloads/pdf/Victor%20SPX%20User's%20Guide.pdf]

CTRE Sensors

	Pigeon IMU

	API Documentation(Java [https://www.ctr-electronics.com/downloads/api/java/html/classcom_1_1ctre_1_1phoenix_1_1sensors_1_1_pigeon_i_m_u.html], C++ [https://www.ctr-electronics.com/downloads/api/cpp/html/classctre_1_1phoenix_1_1sensors_1_1_pigeon_i_m_u.html])

	Technical Manual [https://www.ctr-electronics.com/downloads/pdf/Pigeon%20IMU%20User's%20Guide.pdf]

	CANifier

	API Documentation (Java [https://www.ctr-electronics.com/downloads/api/java/html/classcom_1_1ctre_1_1phoenix_1_1_c_a_nifier.html#ad9a05fae7065d3f39f7bc8a86f15b0a1], C++ [https://www.ctr-electronics.com/downloads/api/cpp/html/classctre_1_1phoenix_1_1_c_a_nifier.html#a706308fce1dea96785bf3ac845bafc02])

	Technical Manual [https://www.ctr-electronics.com/downloads/pdf/CANifier%20User's%20Guide.pdf]

REV Robotics

REV Robotics currently offers the SPARK MAX motor controller, which has a similar feature-set to the Talon SRX.

REV Motor Controllers

	SPARK MAX

	API Documentation (Java [https://www.revrobotics.com/content/sw/max/sw-docs/java/com/revrobotics/CANSparkMax.html], C++ [https://www.revrobotics.com/content/sw/max/sw-docs/cpp/classrev_1_1_c_a_n_spark_max.html])

	Technical Manual [https://www.revrobotics.com/sparkmax-users-manual/]

Playing With Fusion

Playing With Fusion (PWF) offers the Venom integrated motor/controller as well as a Time-of-Flight distance sensor:

PWF Motor Controllers

	Venom

	API Documentation (Java [https://www.playingwithfusion.com/frc/2020/javadoc/com/playingwithfusion/package-summary.html], C++ [https://www.playingwithfusion.com/frc/2020/cppdoc/html/annotated.html])

	Technical Manual [https://www.playingwithfusion.com/include/getfile.php?fileid=7086]

PWF Sensors

	Time of Flight Sensor

	API Documentation(Java [https://www.playingwithfusion.com/frc/2020/javadoc/com/playingwithfusion/package-summary.html], C++ [https://www.playingwithfusion.com/frc/2020/cppdoc/html/annotated.html])

	Technical Manual [https://www.playingwithfusion.com/include/getfile.php?fileid=7091]

 FRC CAN Device Specifications

FRC CAN Device Specifications

This document seeks to describe the basic functions of the current FRC
CAN system and the requirements for any new CAN devices seeking to work
with the system.

Addressing

FRC CAN nodes assign arbitration IDs based on a pre-defined scheme that
breaks the ID into 5 components:

Device Type

This is a 5-bit value describing the type of device being addressed. A
table of currently assigned device types can be found below. If you wish
to have a new device type assigned from the Reserved pool, please
submit a request to FIRST.

	Device Types

	

	Broadcast Messages

	0

	Robot Controller

	1

	Motor Controller

	2

	Relay Controller

	3

	Gyro Sensor

	4

	Accelerometer

	5

	Ultrasonic Sensor

	6

	Gear Tooth Sensor

	7

	Power Distribution Module

	8

	Pneumatics Controller

	9

	Miscellaneous

	10

	IO Breakout

	11

	Reserved

	12-30

	Firmware Update

	31

Manufacturer

This is an 8-bit value indicating the manufacturer of the CAN device.
Currently assigned values can be found in the table below. If you wish
to have a manufacturer ID assigned from the Reservedpool, please
submit a request to FIRST.

	Manufacturer

	

	Broadcast

	0

	NI

	1

	Luminary Micro

	2

	DEKA

	3

	CTR Electronics

	4

	REV Robotics

	5

	Grapple

	6

	MindSensors

	7

	Team Use

	8

	Kauai Labs

	9

	Copperforge

	10

	Playing With Fusion

	11

	Studica

	12

	Reserved

	13-255

API/Message Identifier

The API or Message Identifier is a 10-bit value that identifies a
particular command or message type. These identifiers are unique for
each Manufacturer + Device Type combination (so an API identifier that
may be a “Voltage Set” for a Luminary Micro Motor Controller may be a
“Status Get” for a CTR Electronics Motor Controller or Current Get
for a CTR Power Distribution Module).

The Message identifier is further broken down into 2 sub-fields: the
6-bit API Class and the 4-bit API Index.

API Class

The API Class is a 6-bit identifier for an API grouping. Similar
messages are grouped into a single API Class. An example of the API
Classes for the Jaguar Motor Controller is shown in the table below.

	API Class

	

	Voltage Control Mode

	0

	Speed Control Mode

	1

	Voltage Compensation Mode

	2

	Position Control Mode

	3

	Current Control Mode

	4

	Status

	5

	Periodic Status

	6

	Configuration

	7

	Ack

	8

API Index

The API Index is a 4-bit identifier for a particular message within an
API Class. An example of the API Index values for the Jaguar Motor
Controller Speed Control API Class is shown in the table below.

	API Index

	

	Enable Control

	0

	Disable Control

	1

	Set Setpoint

	2

	P Constant

	3

	I Constant

	4

	D Constant

	5

	Set Reference

	6

	Trusted Enable

	7

	Trusted Set No Ack

	8

	Trusted Set Setpoint No Ack

	10

	Set Setpoint No Ack

	11

Device Number

Device Number is a 6-bit quantity indicating the number of the device of
a particular type. Devices should default to device ID 0 to match other
components of the FRC Control System. Device 0x3F may be reserved for
device specific broadcast messages.

[image: image0]

Protected Frames

FRC CAN Nodes which implement actuator control capability (motor
controllers, relays, pneumatics controllers, etc.) must implement a way
to verify that the robot is enabled and that commands originate with the
main robot controller (i.e. the roboRIO).

Broadcast Messages

Broadcast messages are messages sent to all nodes by setting the device
type and manufacturer fields to 0. The API Class for broadcast messages
is 0. The currently defined broadcast messages are shown in the table
below:

	Description

	

	Disable

	0

	System Halt

	1

	System Reset

	2

	Device Assign

	3

	Device Query

	4

	Heartbeat

	5

	Sync

	6

	Update

	7

	Firmware Version

	8

	Enumerate

	9

	System Resume

	10

Devices should disable immediately when receiving the Disable message
(arbID 0), implementation of other broadcast messages is optional.

Requirements for FRC CAN Nodes

For CAN Nodes to be accepted for use in the FRC System, they must:

	Communicate using Arbitration IDs which match the prescribed FRC
format:

	A valid, issued CAN Device Type (per Table 1 - CAN Device Types)

	A valid, issued Manufacturer ID (per Table 2 - CAN Manufacturer Codes)

	API Class(es) and Index(s) assigned and documented by the device manufacturer

	A user selectable device number if multiple units of the device type are intended to co-exist on the same network.

	Support the minimum Broadcast message requirements as detailed in the Broadcast Messages section.

	If controlling actuators, utilize a scheme to assure that the robot is issuing commands, is enabled, and is still present

	Provide software library support for LabVIEW, C++, and Java or arrange with FIRST or FIRSTs Control System Partners to provide such interfaces.

 Basic Programming

Basic Programming

	Git Version Control Introduction

 Git Version Control Introduction

Git Version Control Introduction

Important

A more in-depth guide on Git is available on the Git website [https://git-scm.com/book/en/v2].

Git [https://git-scm.com/about] is a Distributed Version Control System (VCS) created by Linus Torvalds, also known for creating and maintaining the linux kernel. Version Control is a system for tracking changes of code for developers. The advantages of Git Version Control are:

	Separate testing environments into branches

	Ability to navigate to a particular commit without removing history

	Ability to manage commits in various ways, including combining them

	Various other features, see here [https://git-scm.com/about]

Prerequisites

Important

This tutorial uses the Windows operating system

You have to download and install Git from the following links:

	Windows [https://git-scm.com/download/win]

	macOS [https://git-scm.com/download/mac]

	Linux [https://git-scm.com/download/linux]

Note

You may need to add Git to your path [https://www.google.com/search?q=adding+git+to+path]

Git Vocabulary

Git revolves around several core commands:

	Repository: the data structure of your code, including a .git folder in the root directory

	Commit: a particular saved state of the repository, this includes all files and additions

	Branch: a means of separating various commits, having a unique history. This is primarily used for separating development and stable branches.

	Push: update the remote repository with your local changes

	Pull: update your local repository with the remote changes

	Clone: retrieving a local copy of a repository to modify

	Fork: duplicating a pre-existing repository to modify, and to compare against the original

	Merge: combining various changes from different branches/commits/forks into a single history

Repository

A Git repository is a data structure containing the structure, history, and files of a project.

Git repositories usually consist of:

	A .git folder. This folder contains the various information about the repository.

	A .gitignore file. This file contains the files or directories that you do not want included when you commit.

	Files and folders. This is the main content of the repository.

Creating the repository

You can store the repository locally, or through a remote. A remote being the cloud, or possibly another storage medium that hosts your repository. Github [https://github.com/] is a popular free hosting service. Numerous developers use it, and that’s what this tutorial will use.

Note

There are various providers that can host repositories. Gitlab [https://about.gitlab.com], Bitbucket [https://bitbucket.org/], and Cloudforge [https://www.cloudforge.com/] are a few alternatives to Github

Creating a Github Account

Go ahead and create a Github account by visiting the website [https://github.com] and following the own screen prompts.

[image: ../../../_images/image1.png]

Local Creation

After creating and verifying your account, you’ll want to visit the homepage. It’ll look similar to the shown image.

[image: ../../../_images/image22.png]
Click the plus icon in the top right.

[image: ../../../_images/image3.png]
Then click “New Repository”

[image: ../../../_images/image4.png]
Fill out the appropriate information, and then click “Create repository”

[image: ../../../_images/image5.png]
You should see a screen similar to this

[image: ../../../_images/image6.png]

Note

The keyboard shortcut ctrl + ~ can be used to open a terminal in Visual Studio Code.

Now you’ll want to open a powershell window and navigate to your project directory. An excellent tutorial on powershell can be found here [https://programminghistorian.org/en/lessons/intro-to-powershell]. Please consult your search engine on how to open a terminal on alternative operating systems.

[image: ../../../_images/image7.png]
In the below example, we created a file called README.md with the contents of # Example Repo. More details on the various commands can be found in the subsequent sections.

> cd "C:\Users\ExampleUser9007\Documents\Example Folder"
> git init
Initialized empty Git repository in C:/Users/ExampleUser9007/Documents/Example Folder/.git/
> echo "# ExampleRepo" >> README.md
> git add README.md
> git commit -m "First commit"
[master (root-commit) fafafa] First commit
 1 file changed, 1 insertions(+), 0 deletions(-)
 create mode 100644 README.md
> git remote add origin https://github.com/ExampleUser9007/ExampleRepo.git
> git push -u origin master

Commits

Repositories are primarily composed of commits. Commits are saved states or versions of code.

In the previous example, we created a file called README.md. Open that file in your favorite text editor and edit a few lines. After tinkering with the file for a bit, simply save and close. Navigate to powershell and type the following commands.

> git add README.md
> git commit -m "Adds a description to the repository"
[master bcbcbc] Adds a description to the repository
 1 file changed, 2 insertions(+), 0 deletions(-)
> git push

Note

Writing good commit messages is a key part of a maintainable project. A guide on writing commit messages can be found here [https://chris.beams.io/posts/git-commit/].

Git Pull

Note

git fetch can be used when the user does not wish to automatically merge into the current working branch

This command retrieves the history or commits from the remote repository. When the remote contains work you do not have, it will attempt to automatically merge. See Merging.

Run: git pull

Git Add

This command adds a selected file(s) to a commit. To commit every file/folder that isn’t excluded via gitignore.

Run: git add FILENAME.txt where FILENAME.txt is the name and extension of the file to add to a commit.
Run: git add . will add every untracked, unexcluded file when ran in the root of the repository.

Git Commit

This command creates the commit and stores it locally. This saves the state and adds it to the repositories history.

Run: git commit -m "type message here"

Git Push

Upload (Push) your local changes to the remote (Cloud)

Run: git push

Branches

Branches are a similar to parallel worlds to Git. They start off the same, and then they can “branch” out into different varying paths. Consider the Git control flow to look similar to this.

[image: digraph branches { "Example Repo" [shape=cylinder] FeatureA [shape=ellipse] FeatureB [shape=ellipse] FeatureC [shape=ellipse] "Example Repo" -> FeatureA "Example Repo" -> FeatureB "Example Repo" -> FeatureC "Update File 1" [shape=box] FeatureA -> "Update File 1" "Update File 2" [shape=box] FeatureB -> "Update File 2" "Update File 3" [shape=box] FeatureC -> "Update File 3" }]

In the above example, FeatureB was merged into FeatureA. This is what is called a merge. You are “merging” the changes from one branch into another.

Creating a Branch

Run: git branch branch-name where branch-name is the name of the branch to create. The new branch history will be created from the current active branch.

Entering a Branch

Once a branch is created, you have to then enter the branch.

Run: git checkout branch-name where branch-name is the branch that was previously created.

Merging

In scenarios where you want to copy one branches history into another, you can merge them. A merge is done by calling git merge branch-name with branch-name being the name of the branch to merge from. It is automatically merged in the current active branch.

It’s common for a remote repository to contain work (history) that you do not have. Whenever you run git pull, it will attempt to automatically merge those commits. That merge may look like the below.

[image: digraph branches { "Example Repo" [shape=cylinder] FeatureA [shape=ellipse] FeatureB [shape=ellipse] FeatureC [shape=ellipse] "Example Repo" -> FeatureA "Example Repo" -> FeatureB "Example Repo" -> FeatureC "Update File 1" [shape=box] FeatureA -> "Update File 1" "Update File 2" [shape=box] FeatureB -> "Update File 2" "Update File 3" [shape=box] FeatureC -> "Update File 3" }]

However, in the above example, what if File 1 was modified by both branch FeatureA and FeatureB? This is called a merge conflict. A merge conflict will can be resolved by editing the conflicting file. In the example, we would need to edit File 1 to keep the history or changes that we want. After that has been done. Simply re-add, re-commit, and then push your changes.

Resets

Sometimes history needs to be reset, or a commit needs to be undone. This can be done multiple ways.

Reverting the Commit

Note

You cannot revert a merge, as git does not know which branch or origin it should choose.

To revert history leading up to a commit run git revert commit-id. The commit IDs can be shown using the git log command.

Resetting the Head

Warning

Forcibly resetting the head is a dangerous command. It permanently erases all history past the target. You have been warned!

Run: git reset --hard commit-id.

Forks

Forks can be treated similarly to branches. You can merge the upstream (original repository) into the origin (forked repository).

Updating a Fork

	Add the upstream: git remote add upstream https://github.com/ORIGINAL_OWNER/ORIGINAL_REPOSITORY.git

	Confirm it was added via: git remote -v

	Pull changes from upstream: git fetch upstream

	Merge the changes into head: git merge upstream/upstream-branch-name

Gitignore

Important

It is extremely important that teams do not modify the .gitignore file that is included with their robot project. This can lead to offline deployment not working.

A .gitignore file is commonly used as a list of files to not automatically commit with git add. Any files or directory listed in this file will not be committed. They will also not show up with git status [https://git-scm.com/docs/git-status].

Additional Information can be found here [https://www.atlassian.com/git/tutorials/saving-changes/gitignore]

Hiding a Folder

Simply add a new line containing the folder to hide, with a forward slash at the end

EX: directory-to-exclude/

Hiding a File

Add a new line with the name of the file to hide, including any prepending directory relative to the root of the repository.

EX: directory/file-to-hide.txt

EX: file-to-hide2.txt

Additional Information

A much more in-depth tutorial can be found at the official git [https://git-scm.com/docs/gittutorial] website.

A guide for correcting common mistakes can be found at the git flight rules [https://github.com/k88hudson/git-flight-rules/blob/master/README.md] repository.

 Suporte

Suporte

Além da documentação aqui, há uma variedade de outros recursos disponíveis para os times de FRC® para ajudar no entendimento do Sistema de Controle e de Softwares.

Outras documentações

Além deste site, existem outros locais onde as equipes podem verificar a documentação:

	NI FRC Community Documents Section [https://forums.ni.com/t5/FIRST-Robotics-Competition/bd-p/1014?profile.language=en&view=documents]

	FIRST Inspires Technical Resources Page [https://www.firstinspires.org/resource-library?flagged=All&combine=&field_content_type_value%5B0%5D=first_robotics_competition&field_resource_library_tags_tid=171&sort_by=created_1]

	CTRE Product Pages [https://www.ctr-electronics.com/control-system.html]

Fóruns

Tem uma pergunta não respondida pela documentação? O suporte é fornecido aqui:

	NI FRC Community Discussion Section [https://forums.ni.com/t5/FIRST-Robotics-Competition/bd-p/1014?profile.language=en&view=discussions] (perguntas sobre roboRIO, LabVIEW e Driver Station software)

	FIRST Inspires Control System Forum [https://forums.firstinspires.org/forum/general-discussions/first-programs/first-robotics-competition/competition-discussion/control-system?f=1338] (perguntas sobre wiring, hardware e Driver Station)

	FIRST Inspires Programming Forum [https://forums.firstinspires.org/forum/general-discussions/first-programs/first-robotics-competition/competition-discussion/programming-aa] (perguntas sobre programação com C++, Java, ou LabVIEW)

Under Control 1156

Alguma pergunta não respondida? Entre em contato com o time pelo nosso email: robotica.1156@gmail.com

Suporte via telefone da NI

Tem uma pergunta sobre LabVIEW, roboRIO, ou sobre a Driver Station? A NI oferece suporte via telefone para os times de FRC durante a build season em +1 (866) 511-6285 1:00-7:00 PM CST Segunda - Sexta.

CTRE

Suporte para os componentes da Cross The Road Electronics (Pneumatics Control Module, Power Distribution Panel, Talon SRX, e Voltage Regulator Module) é oferecido pelo email support@crosstheroadelectronics.com

Reporte de Bugs

Encontrou um bug? Informe-nos relatando-o na seção Issues do projeto WPILibSuite apropriado no Github: https://github.com/wpilibsuite

 Phoenix Software Reference Manual

Phoenix Software Reference Manual

This is the latest documentation for CTR-Electronics Phoenix software framework. This includes:

	Class library for Talon SRX, Victor SPX, CANifier and Pigeon IMU (C++/Java/LabVIEW for FRC, C# for HERO).

	Phoenix Tuner GUI - provides configuration options, diagnostics, control and plotting.

	Phoenix Diagnostic Server - install on to RIO for Tuner, and to perform HTTP API requests for diagnostic information.

Be sure to follow the following instructions in order to ensure success in developing your robot platform.

 Primer: CTRE CAN Devices

Primer: CTRE CAN Devices

CTR-Electronics has designed many of the available CAN bus devices for FRC-style robotics.
This includes:

	Talon FX, Talon SRX, and Victor SPX motor controllers (PWM and CAN)

	CANCoder

	Pigeon IMU

	CANifier

	Pneumatics Control Mode (PCM)

	Power Distribution Panel (PDP)

These devices have similar functional requirements, specifically every device of a given model group requires a unique device ID for typical FRC use (settings, control and status). The device ID is usually expressed as a number between ‘0’ and ‘62’, allowing use for up to 63 Talon SRXs, 63 Victors, 63 PDPs, etc. at once. This range does not intercept with device IDs of other CAN device types. For example, there is no harm in having a Pneumatics Control Module (PCM) and a Talon SRX both with device ID ‘0’. However, having two Talon SRXs with device ID ‘0’ will be problematic.

These devices are field upgradable, and the firmware shipped with your devices will predate the “latest and greatest” tested firmware intended for use with the latest API release. Firmware update can be done easily using Phoenix Tuner.

The Talon FX/SRX and Victor SPX provide two pairs of twisted CANH (yellow) and CANL (green) allowing for daisy chaining. Other devices such as the PDP and PCM have Weidmuller connectors that accept twisted pair cabling. Often you will be able to use your Talons and Victors to connect together your PCM and PDP to each other.

The CAN termination resistors are built into the FRC robot controller (roboRIO) and in the Power Distribution Panel (PDP) assuming the PDP’s termination jumper is in the ON position.

More information on wiring and hardware requirements can be found in the user manual of each device type.

 Primer: What is Phoenix Software

Primer: What is Phoenix Software

Phoenix is a package that targets LabVIEW, C++, and Java for the FRC Robotics Controller platform, i.e. the NI roboRIO robot controller.

It includes the Application Programming Interface (API), which are the functions you call to manipulate the CTRE CAN bus devices: Talon FX, Talon SRX, Victor SPX, CANCoder, CANifier, and Pigeon IMU.

Note

PCM and PDP API are built into the core WPI distribution.

The C++ and Java APIs are very similar, typically only differing on the function name case (configAllSettings in Java versus ConfigAllSettings in C++).
Because Java is more widely used in FRC than C++, this document will reference the Java routine names.
C++ users should take note that the leading character of every function is UPPERCASE in C++.

Additionally, Phoenix shared libraries are also targeted for C++ on Linux (amd64, armhf, aarch64) and typically available on our maven repository. The example support libraries use socket-can for CANBus access, however custom drivers can be provided by the end user for alternative CANBus solutions (NVIDIA TX2 native CAN bus for example).

Phoenix also includes a NETMF (C#) class library for the non-FRC HERO Robot Controller.
This can replace the roboRIO in use cases that don’t require the full features of the FRC control system, and are not in use during competition.

Note

With Phoenix framework, teams can control/leverage Talons, Victors, Pigeons, CANCoders, CANifiers outside of the roboRIO (e.g. Rasp-Pi or Jetson TX2), and use the roboRIO/DriverStation to safely enable/disable the actuators.

Note

Leveraging CTRE CAN devices from third-party CAN hardware was officially made FRC legal for the 2019 season.

There are tons of examples in all languages at CTRE’s GitHub account:

	https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages

	https://github.com/CrossTheRoadElec/Phoenix-Examples-LabVIEW

Entire GitHub organization: https://github.com/CrossTheRoadElec/

Phoenix-Examples-Languages and Phoenix-Examples-LabVIEW are specifically tested on the FRC RoboRIO control system.

Phoenix-Linux-SocketCAN-Example demonstrates control of Talons from a Raspberry Pi.
https://github.com/CrossTheRoadElec/Phoenix-Linux-SocketCAN-Example

What is Phoenix Tuner?

Phoenix-Tuner is the graphical interface that allows for configuration of Phoenix CAN bus devices.

[image: ../../_images/tuner.png]
It provides a variety of functionality to support all Phoenix CAN Bus devices. The feature set includes:

	Update device firmware (including PDP/PCM)

	Change CAN IDs

	Configure direction and offsets

	Self-test Snapshot devices

	Change configuration settings

	Factory default configuration settings

	Test motors

	Check plots

	Temperature Calibrate Pigeon-IMU

	Confirm proper CAN bus wiring without writing any software.

Now you can drive your motors and collect data without writing any software.

[image: ../../_images/sensor-11.png]
Configuration values can be checked, modified, and defaulted with the new config view.
Config values can also be imported/exported as an easy-to-follow JSON formatted file.

[image: ../../_images/sensor-20.png]
The following sections of documentation will cover how to use Phoenix Tuner and the other components of Phoenix.

Tip

Have a feature request? Send to us at support@ctr-electronics.com or report it on GitHub.

 Prepare your workstation computer

Prepare your workstation computer

Before Installing Phoenix…

It is strongly recommended to complete the base installation of FRC tools.
https://docs.wpilib.org/en/latest/docs/getting-started/getting-started-frc-control-system/control-system-software.html

Warning

You will need to image the roboRIO to 2020 software before continuing. The roboRIO kickoff versions are image 2020_v10.

Test base FRC Installation - FRC LabVIEW

If a team intends to use LabVIEW to develop robot software, be sure to complete the full NI installer. At which point, opening LabVIEW should reveal the FRC-styled graphical start menu.

At this point it is recommended to create a simple template project and test deploy to the roboRIO. Be sure the DriverStation can communicate with the robot controller, and that DS message log is functional.

Note

LabVIEW is versioned 2019 due to its release schedule. Therefore, LV2019 is used for the 2020 season.

Test base FRC Installation - FRC C++ / Java

It is recommended to install the FRC Driver Station Utilities. This will install the Driver Station software, which is necessary for:

	Basic comms checks

	Reading joystick data

	Generally required for enabling motor actuation (Phoenix Tuner Control features may require this, depending on setup).

General Recommendations for FRC C++ / Java.

The FRC C++/Java standard distribution for 2020 is based on the Microsoft Visual Studio Code development environment with WPI extensions.

If you are not familiar with developing C++/Java FRC programs, we strongly recommend testing full deployment to your robot controller before installing Phoenix and porting previous season software.
A recommended test is to:

	Create a project from scratch

	Make a simple change such as add a print statement with a counter.

	Deploy (or debug) your application.

	Confirm robot can be teleop-enabled in DS.

	Open FRC message Console and read through all the messages.

	Repeat 2 - 5 ten times. This will train students to become familiar with and build general confidence in the tools.

Note

Third-party vendor libraries are installed into the C++/Java project, not the environment. For each C++/Java project you create, you must use the WPI provided tools to select Phoenix to bring the libraries into your project.

What to Download (and why)

Option 1: Windows installer (strongly recommended)

Environments: Windows-LabVIEW, Windows-C++/Java, HERO C#

Phoenix Installer zip can be downloaded at:

http://www.ctr-electronics.com/hro.html#product_tabs_technical_resources.

It is typically named Phoenix Framework_Windows_vW.X.Y.Z.zip

This will install:

	The LabVIEW Phoenix API (if LabVIEW is detected and selected in installer)

	The C++/Java Phoenix API (if selected in installer)

	Device Firmware Files (that were tested with the release)

	CTRE Support of RobotBuilder

	Phoenix Tuner

	Installs Phoenix API libraries into the roboRIO (required for LabVIEW)

	Installs Phoenix Diagnostics Server into the RoboRIO (needed for CAN diagnostics).

	Plotter/Control features

	Self-test Snapshot

	Device ID and field-upgrade

Option 2: Phoenix API via Non-Windows Zip

Environments: Linux/MacOS - C++/Java

The Phoenix API can be manually installed on non-Windows platforms by downloading the “non-Windows” zip and following the instructions found inside.

This essentially contains a maven-style repository that holds the API binaries and headers, as well as a “vendordeps” JSON file that instructs VS how to incorporate the Phoenix C++/Java API libraries.

Note

This is auto installed when using the Windows full installer (Option 1).

Phoenix Tuner

Environments: Windows

If you are using option 2, you will need to download Phoenix Tuner separately.
Phoenix Tuner is available here…
https://github.com/CrossTheRoadElec/Phoenix-Tuner-Release/releases

This can be convenient for workstations that aren’t used for software development, but are used for field-upgrade or testing motor controllers.

Note

LabVIEW teams may need to use Phoenix Tuner to install Phoenix libraries into the roboRIO. More information on this can be found under Prepare Robot Controller.

Note

This is auto installed when using the Windows full installer.

Note

Developers may be interested to know that all Phoenix Tuner features leverage an HTTP API provided by the Phoenix Diagnostics Server. As such, custom tooling can be developed to field-upgrade, test-control, or diagnostics CTRE devices without Tuner.

Device Firmware Files (crf)

The test firmware files for all CTRE devices are packaged with the Windows Installer (and has been for years). However, many FRC teams don’t notice, or prefer to download them directly from the product pages on the ctr-electronics.com website. If Internet access is available, they can be downloaded as such.

The FRC Software installer will create a directory with various firmware files/tools for many control system components.
Typically, the path is:

C:\Users\Public\Documents\FRC

[image: ../../_images/crf.png]
When the path is entered into a browser, the browser may fix-up the path:

C:\Users\Public\Public Documents\FRC

In this directory are the initial release firmware CRF files for all CTRE CAN bus devices, including the new Talon FX and CANCoder.

The latest firmware to be used can be found in the ch22_SoftReleaseNote.

Note

Additionally, newer updates may be provided online at http://www.ctr-electronics.com.

Note

There is no longer FRC versus non-FRC firmware for motor controllers. Instead the latest firmware detects if the use case is FRC. If so, the device will FRC-Lock, and will require the Driver Station for actuation.

Workstation Installation

There are three installation methods listed below. The simplest and recommended approach is to run the Windows Installer (Option 1).

Option 1: Windows Offline Installer (C++/Java/LabVIEW, HERO C#)

Un-compress the downloaded zip.

[image: ../../_images/exe.png]
Double click on the installer. If the Windows protection popup appears press More Info, then Run anyway.

[image: ../../_images/prot-1.png]
[image: ../../_images/prot-2.png]
[image: ../../_images/prot-3.png]
This will look very similar to previous installers - make sure you have the relevant component selected for your programming language.

[image: ../../_images/install-1.png]
LV Teams: Make sure LabVIEW is selected. If it is grayed out, then LabVIEW was not installed on the PC.

C++/Java Teams: Make sure C++/Java is selected.

If Visual Studio 2017 (Community/Professional) is detected, HERO C# will be selected. This can be turned off to speed up the installer.

[image: ../../_images/install-2a.png]
Installer can take anywhere from 30 seconds to 5 minutes depending on which Microsoft runtimes need to be installed.

[image: ../../_images/install-3.png]
Final page will look like this. The Phoenix Tuner link can be used to open Phoenix Tuner. Alternatively, you can use the Windows Start Menu.

[image: ../../_images/install-4.png]

Option 2: Non-Windows Zip (C++/Java)

The zip will contain two folders, “maven” and “vendordeps”.
These folders are meant to be inserted into your frc2020 install folder.

See WPI documentation for typical location.
https://docs.wpilib.org/en/latest/docs/software/wpilib-overview/3rd-party-libraries.html#the-mechanism-c-java

Copy/paste the maven and vendordeps folder into frc2020 folder. This will override a pre-existing Phoenix installation if present.

Note

This will not install Phoenix Tuner or firmware files. If these are necessary (and they typically are) these can be downloaded separately or consider using the complete Phoenix Installer.

Post Installation Steps

After all workstation installs, the following checks should be followed to confirm proper installation.

FRC C++/Java - Verify Installation

The offline files for vscode are typically installed in:

C:\Users\Public\wpilib\2020\vendordeps\Phoenix.json (File used by vscode to include Phoenix in your project)
C:\Users\Public\wpilib\2020\maven\com\ctre\phoenix (multiple maven-style library files)

Your drive letter may be different than “C:”.
After running the Phoenix Installer, the instructions to add or update Phoenix in your robot project must be followed.

FRC LabVIEW – Verify Installation

After running the installer, open a pristine copy of FRC LabVIEW.

Testing the install can be done by opening LabVIEW and confirming the VIs are installed. This can be done by opening an existing project or creating a new project, or opening a single VI in LabVIEW. Whatever the simplest method to getting to the LabVIEW palette.

The CTRE Palette is located in:

	WPI Robotics Library -> Third Party.

[image: ../../_images/lv-paletteMenu.png]
This palette can also be found in:

	WPI Robotics Library -> RobotDrive -> MotorControl -> CanMotor

	WPI Robotics Library -> Sensors -> Third Party

	WPI Robotics Library -> Actuators -> Third Party

FRC Windows – Open Phoenix Tuner

Open Phoenix Tuner

[image: ../../_images/tuner-1.png]
If this is the first time opening application, confirm the following:

	the status bar should read “Lost Comm”.

	No CAN devices will appear.

	The Server version will be unknown.

[image: ../../_images/tuner-2.png]

 FRC: Prepare NI roboRIO

FRC: Prepare NI roboRIO

Why prepare Robot Controller?

In the previous 2019 season, preparing the Robot Controller typically meant:

	Installing the Phoenix Diagnostics

	Installing the Phoenix API into roboRIO (if using LabVIEW).

In the 2020 release of Phoenix, both of these are automatically handled by the library deployment features of WPI Visual Studio Code extensions (C++/Java) and NI LabVIEW.

Phoenix Diagnostics has become a library that is compiled into the FRC robot application. This is a result of the roboRIO CAN bus changes implemented by the NI for 2020.
Tuner now communicates with “Phoenix Diagnostic Server” running in the deployed application via an HTTP API.

If the roboRIO does not have a deployed application, a temporary Diagnostic Server application can be deployed from Tuner. This is particularly useful during hardware-bringup.

LabVIEW

NI LabVIEW supports a feature that will automatically deploy the Phoenix API libraries to the roboRIO.
After running the installer, 2020 LabVIEW robot projects will automatically install Phoenix into the roboRIO when the program is permanently deployed via “Run As Startup”.

	The steps for first deploy are:
	
	“Build” the FRC Boot-up Deployment

	“Run as Startup”

	Re-boot the roboRIO (see note below)

Note

After first Run-as-Startup (since imaging the RIO), you may see an error in the Driver Station reporting that the Phoenix libraries are missing. A reboot of the RIO will likely resolve this. We recommend using the “Restart roboRIO” button in the Driver Station.

How to prepare Robot Controller

Open Tuner and connect USB between the workstation and the roboRIO.

[image: ../../_images/tuner-1.png]
Select 172.22.11.2 # RoboRIO Over USB and 1250 for the address and port.
These are generally selected by default, and typically do not require modification.

Deploy the Temporary Diagnostic Server.

Note

This is unnecessary if a robot application has been deployed already (C++, Java, or LabVIEW).

[image: ../../_images/tuner-7.png]

Verify the robot controller - Tuner

After application deployment, Tuner will immediately connect to the roboRIO.

Confirm the bottom status bar is green and healthy, and server version is present.

[image: ../../_images/tuner-8.png]
If there are CAN device present, they will appear. However, it is possible that devices are missing, this will be resolved in the next major section (CAN Bus bring up).

[image: ../../_images/tuner-6.png]

roboRIO Connection (Wi-Fi/Ethernet)

The recommended connection method for control/plotter features is over USB or using static IP (Ethernet/Wi-Fi).
The mDNS strategy used by the roboRIO can sometimes fail intermittently which can cause hiccups when submitting HTTP requests to the roboRIO.

Testing has shown that using USB (172.22.11.2) or using static IP address has yielded a greater user experience than the roborio-team-frc.local host name has.

Note

Future releases may have improvements to circumvent the limitations of mDNS.

Verify the robot controller - LabVIEW

Create a pristine LabVIEW application. Add a CTRE device to Begin.Vi. For example, create a Talon SRX object, even if the device is not physically present.

[image: ../../_images/verify-LV.png]

Tip

Drag drop the following into your Begin.vi

[image: ../../_images/lv-snip-1.png]
Connect DS and turn on Warnings and Prints by selecting the bottom most option.

[image: ../../_images/prep-rc-2.png]
Upload the application to the robot controller and check the driver station message log.

If everything is working, the Phoenix Initialization message can be found.

Note

This message will not appear after subsequent “soft” deploy (LabVIEW RAM-only temporary deploys).

[image: ../../_images/prep-rc-3.png]
If Phoenix API has not been installed into the robot controller, this message will appear.

[image: ../../_images/prep-rc-4.png]
If you have used Phoenix LifeBoat (which should NOT be used), this message will appear. If this occurs you will need to re-image your roboRIO and then re-follow the instructions in this section exactly, without using LifeBoat.

[image: ../../_images/prep-rc-8.png]

Verify the robot controller - Web page

The Silverlight web interface provided in previous seasons is no longer available. Moving forward, the NI web interface will likely be much simpler.

As a result, Phoenix Tuner may embed a small message reminder indicating that CAN features have been moved to Tuner. This will depend on the version of Phoenix.

Typically, the message will disappear after 5 seconds. This will not interfere with normal web page features (IP Config, etc.).

[image: ../../_images/prep-rc-5.png]

Warning

The roboRIO Web-page does not provide CAN bus support any more as this has been removed by NI. Use Phoenix Tuner instead.

Warning

The roboRIO Web-page does not render correctly if using Internet Explorer (see below). Recommended browsers are Chrome or Firefox.

[image: ../../_images/bad-web-dash.png]

Verify the robot controller - HTTP API

Tuner leverages the HTTP API provided by Phoenix Diagnostics Server.

So technically you have already confirmed this is working.

But, it is worth noting that this HTTP API can potentially be used by third-party software, or even the robot application itself.

Here is a simple get version command and response.

http://172.22.11.2:1250/?action=getversion

[image: ../../_images/prep-rc-7.png]
Here is a simple getdevices command and response.

http://172.22.11.2:1250/?action=getdevices

[image: ../../_images/prep-rc-6.png]

 Initial Hardware Testing

Initial Hardware Testing

For your competition team to have the best chance of success, hardware components should be tested as soon as they are received. This is generally done by:

	Powering up the device and confirming LED states.

	Ensuring hardware shows up in Tuner if wired to CAN Bus.

	Drive outputs / drive motor in both directions (if motor controller).

This is explained in the sections below, but it is worth pointing out how important this step is.
It is in your team’s best interest to test ALL purchased robot components immediately and in isolation.
Here are the reasons why:

	Robot replacement components should be in a state of readiness. Otherwise a replacement during competition can yield erroneous behavior.

	Many robot components (in general) have fixed warranty periods, and replacements must be done within them.

	Confirming devices are functional before handing them to students ensures best chance of success. If a student later damages hardware, they need to understand how they did it to ensure it does not happen again. Without initial validation, you can’t determine root-cause.

Much of this is done during the “bring-up” phase of the robot. However, there is much validation a team can do long before the robot takes form.

Unfortunately, there are many teams that do not perform this step, and end up isolating devices and re-implementing their cable solutions at competition, because this was not done during robot bring up.

Note

“Bring up / Board bring up / Hardware bring up” is an engineering colloquial phrase. It is the initial setup and validation phase of your bench or robot setup.

 Bring Up: CAN Bus

Bring Up: CAN Bus

Now that all of the software is installed and verified, the next major step is to setup hardware and firmware.

Understand the goal

At this point we want to have reliable communication with CAN devices.
There are typically two failure modes that must be resolved:

	There are same-model devices on the bus with the same device ID (devices have a default device ID of ‘0’).

	CAN bus is not wired correctly / robustly.

This is why during hardware validation, you will likely have to isolate each device to assign a unique device ID.

Note

CTRE software has the ability to resolve device ID conflicts without device isolation, and CAN bus is capable of reporting the health of the CAN bus (see Driver Station lightening tab). However, the problem is when both root-causes are occurring at the same time, this can confuse students who have no experience with CAN bus systems.

Note

Many teams will preassign and update devices (Talon SRXs for example) long before the robot takes form. This is also a great task for new students who need to start learning the control system (with the appropriate mentor oversight to ensure hardware does not get damaged).

Note

Label the devices appropriately so there is no guessing which device ID is what. Don’t have a label maker? Use tape and/or Sharpie (sharpie marks can be removed with alcohol).

Warning

Talon SRX and Talon FX must use unique device IDs for Phoenix API to function correctly. This design decision was made so that teams could use the existing TalonSRX class for control.

Check your wiring

Specific wiring instructions can be found in the user manual of each product, but there are common steps that must be followed for all devices:

	If connectors are used for CANBus, tug-test each individual crimped wire one at a time. Bad crimps/connection points are the most common cause of intermittent connection issues.

	Confirm red and black are not flipped. Motor Controllers typically are not reverse power protected.

	Confirm battery voltage is adequate (through Driver Station or through voltmeter).

	Manually inspect and confirm that green-connects-to-green and yellow-connects-to-yellow at every connection point. Flipping/mixing green and yellow is a common failure point during hardware bring up.

	Confirm breakers are installed in the PDP where appropriate.

	Measure resistance between CANH and CANL when system is not powered (should measure ~60Ω). If the measurement is 120Ω, then confirm both RIO and PDP are in circuit, and PDP jumper is in the correct location.

Power up and check LEDs

If you haven’t already, power up the platform (robot, bench setup, etc.) and confirm LEDs are illuminated (at all) on all devices.

You may find many of them are blinking or “blipping” red (no communication).

Tip

If you are color-blind or unable to determine color-state, grab another team member to assist you.

Note

If using Ribbon cabled Pigeon IMUs, Pigeon LEDs will reflect the ribbon cable, not the CAN bus. At which point any comm issue with Pigeon will be resolved under section Bring Up: Pigeon IMU.

Open Phoenix Tuner

Navigate to the CAN devices page.

This capture is taken with no devices connected to the roboRIO. roboRIO will take around 30 seconds to boot.

[image: ../../_images/bring-1.png]

LEDs are red – now what?

We need to rule out same-id versus bad-bus-wiring.
There are two approaches.
Approach 1 will help troubleshoot bad wiring and common IDs.
Approach 2 will only be effective in troubleshooting common IDs. But this method is noteworthy because it is simple/quick (no wiring changes, just pull breakers).

The specific instructions for changing device ID are in the next section. Review this if needed.

Approach 1 (best)

Procedure:

	Physically connect CAN bus from roboRIO to one device only. Circumvent your wiring if need be.

	Power boot robot/bench setup.

	Open Phoenix Tuner and wait for connection (roboRIO may take ~30 seconds to boot)

	Open CAN devices tab

	Confirm if CAN device appears.

	Use Tuner to change the device ID

	Label the new ID on the physical device

	Repeat this procedure for every device, one at a time.

If you find a particular device where communication is not possible, scrutinize device’s power and CAN connection to roboRIO. Make the test setup so simple that the only failure mode possible is within the device itself.

Note

Typically, there must be two termination resistors at each end of the bus. One is in the RIO and one is in the PDP. But during bring-up, if you keep your harness short (such as the CAN pigtail leads from a single Talon) then the internal resistor in the RIO is adequate.

Approach 2 (easier)

Procedure:

	Leave CAN bus wiring as is.

	Pull breakers and PCM fuse from PDP.

	Disconnect CAN bus pigtail from PDP.

	Pick the first device to power up and restore breaker/fuse/pigtail so that only this CAN device is powered.

	Power boot robot/bench setup.

	Open Phoenix Tuner and wait for connection (roboRIO may take ~30 seconds to boot)

	Open CAN devices tab

	Confirm if CAN device appears. If device does not appear, scrutinize device’s power and CAN connection to roboRIO.

	Use Tuner to change the device ID

	Label the new ID on the physical device

	Repeat this procedure for every device.

If you find a particular device or section of devices where communication is not possible, then the CAN bus wiring needs to be re-inspected. Remember to “flick” / “shake” / “jostle” the CAN wiring in various sections to attempt to reproduce red LED blips. This is a sure sign of loose contact points.

If you are able to detect and change device ID on your devices individually, begin piecing your CAN bus together. Start with roboRIO <—-> device <—> PDP, to ensure termination exists at both ends. Then introduce the remaining devices until a failure is observed or until all devices are in-circuit.

If introducing a new device creates a failure symptom, scrutinize that device by replacing it, inspecting common wires, and inspecting power.

Note

If 2014 PDP is the only device that does not appear or has red LEDs, see PDP boot up section for specific failure mode.

Note

If ribbon cable Pigeon does not appear, it likely is because Talon has old firmware.

At the end of this section, all devices should appear (notwithstanding the above notes) and device LEDs should not be red. PCM, Talon, Victor, Pigeon, and CANifier typically blink orange when they are healthy and not controlled. PDP may be orange or green depending on its sticky faults.

Set Device IDs

Note

A CTRE device can have an ID from 0 to 62. If you select an invalid ID, you will generally get an immediate prompt.

Below we see several devices, however the physical robot has 19 actual devices.
Because all the Talons have a device ID of ‘0’, the do not show up as unique hardware. This must be resolved before you can attempt utilizing them.

[image: ../../_images/bring-2.png]

Note

We recommend isolating each device and assigning a unique ID first. But in the event there is a conflict, expect an entry mentioning multiple devices. When selecting a device, the actually physical device selected will be the conflict-id device that booted last. You can use this information to control which Talon you are resolving by power cycling the conflict device, then changing its ID in Tuner.

Select the device and use the numeric entry to change the ID. Note the text will change blue when you do this. Then press “Change ID” to apply the changes.

[image: ../../_images/bring-3.png]
If operation completes, an OK will appear in the bottom status bar (this is true of all operations). Also note the ID has updated in the device list, and the ID text is now black again.

[image: ../../_images/bring-4.png]

Tip

All production CTRE hardware ships with a default ID of ‘0’. As a result, it is useful to start your devices at device ID ‘1‘, so you can cleanly add another out-of-box device without introducing a conflict.

When complete, make sure every device is visible in the view. Use the Blink button on each device to confirm the ID matches the expected physical device.

Note

The device count is present in the top left corner of the device list. Use this to quickly confirm all devices are present.

Note

If ribbon-cabled pigeon is not present, then the host talon likely has old firmware.

[image: ../../_images/bring-5.png]

Field upgrade devices

At this point all devices are present, but the firmware is likely old.

The 2020 season has 20.X firmware for Talon FX, Talon SRX, Victor SPX, CANCoder, CANifier, and Pigeon IMU.
Moving forward, the first number of the version will represent the season (next year’s 2021 firmware will be 21.X).

20.X firmware is required for all motor controllers and CANCoder. 20.X is also recommended for CANifier and Pigeon IMU.

Note

Latest PDP is 1.40. PDP typically ship with 1.30. 1.40 has all of the signals read by the WPILib software, and will tare the current measures so current will read 0 instead of ~1-2 amps when there is no current-draw. Updating to 1.40 is recommended.

Note

Latest PCM is 1.65. PCM typically ship with 1.62. Firmware 1.65 has an improvement where hardware-revision 1.6 PCMs will not-interrupt compressor when blacklisting a shorted solenoid channel. Older revisions will pause the compressor in order to safely sticky-fault, new revisions have no need to do this (if firmware is up to date).

[image: ../../_images/bring-6.png]
Select the CRF under the Field-upgrade section then press Update Device.
The CRFs are available in multiple places, and likely are already on your PC/
See section “Device Firmware Files (crf)”.

If there are multiple devices of same type (multiple Talon SRXs for example), you may check Update all devices. This will automatically iterate through all the devices of the same type, and update them. If a device field-upgrade fails, then the operation will complete. Confirm Firmware Version column in the device list after field-upgrade.

Note

Each device takes approximately 15 seconds to field-upgrade.

When complete every device should have latest firmware.

Pick device names (optional)

The device name can also be changed for certain device types:
- CANifier
- Pigeon IMU (on CAN bus only)
- Talon SRX and Victor SPX

Note

PDP and PCM do not support this.

Note

Ribbon cabled Pigeon IMUs do not support this.

Note

To re-default the custom name, clear the “Name” text entry so it is blank and press “Save”.

Self-test Snapshot

At this point every device should be present on the bus, and updated to latest.
This is an opportune time to test the Self-test Snapshot feature of each device.

Select each device either in the device list, or using the dropdown at the center-top.
This dropdown is convenient as it is accessible regardless of how the tabs are docked with Tuner.

Note

If you press the “Selected CAN device” text next to dropdown, you will be taken back to the CAN Devices tab.

[image: ../../_images/bring-7.png]
Navigate to the Self-test Snapshot tab. If Self-test Snapshot tab is not present, use the Windows menu bar to reopen it.

[image: ../../_images/bring-8.png]
Press Self-test Snapshot button and confirm the results.

Note

This Pigeon has not had its firmware updated, this is reported at the top.

You can also use the Blink/Clear faults button to blink the selected device and clear any previously logged sticky faults.

[image: ../../_images/bring-9.png]

Driver Station Versions Page

It is worth mentioning there is basic support of reporting the CAN devices and their versions in the diagnostics tab of the Driver Station.

If there is a mixed collection of firmware versions for a given product type, the version will report “Inconsistent”.

[image: ../../_images/ds-versions.png]

Note

The recommended method for confirming firmware versions is to use Phoenix Tuner.

Note

There is a known issue where ribbon-cabled Pigeons may erroneously report as a Talon. Since this is not a critical feature of the Driver Station, this should not be problematic for FRC teams.

 Bring Up: PCM

Bring Up: PCM

At this point PCM will have firmware 1.62 or 1.65 (latest). Open Phoenix Tuner to confirm.

Phoenix Tuner Self-test Snapshot

Press Self-test Snapshot to confirm solenoid states, compressor state ,and battery/current measurements.
Since device is not enabled, no outputs should assert.

[image: ../../_images/bring-10.png]

Note

In this view, the Self-test Snapshot was docked to the right. If CAN Devices width is shrunk small enough, the field-upgrade and Device ID options are hidden and the list view becomes collapsed. This way you can still use the device list as an alternative to the center-top dropdown.

The next step is to get the compressor and solenoids operational.

Create a Solenoid object in LabVIEW/C++/Java and set channel 0 to true.

import edu.wpi.first.wpilibj.Solenoid;
public class Robot extends TimedRobot {
 Solenoid _solenoid = new Solenoid(0, 0); // first number is the PCM ID (usually zero), second number is the solenoid channel

 public void teleopPeriodic() {
 _solenoid.set(true);
 }

Tip

Image below can be dragged/dropped into LabVIEW editor.

[image: ../../_images/pcm-lv-1.png]
Then confirm using the Solenoid LED on the PCM and Self-test Snapshot in Tuner.

[image: ../../_images/pcm-tuner-1.png]
Generally creating a solenoid object is sufficient for the compressor features to function.
In order for the compressor output to activate, all of the following conditions must be met:

	The robot is enabled via the Driver Station

	Robot application has created a solenoid (or compressor object) with the correct PCM device ID.

	PCM must be powered/wired to CAN Bus.

	Pressure-switch reads too-low (can be confirmed in Self-test Snapshot).

	No compressor related faults occur (can be confirmed in Self-test Snapshot)

Tip

Creating a compressor object is not necessary, but can be useful to force the compressor off despite pressure reading too-low with the setClosedLoopControl routine/VI. This can be useful for robot power management during critical operations.

import edu.wpi.first.wpilibj.Compressor;
public class Robot extends TimedRobot {
 Compressor _compressor = new Compressor();

 public void teleopPeriodic() {
 _compressor.setClosedLoopControl(false); //This will force the compressor off
 }

Tip

Image below can be dragged/dropped into LabVIEW editor.

[image: ../../_images/pcm-lv-2.png]

 Bring Up: PDP

Bring Up: PDP

At this point PDP will have firmware 1.40 (latest). Open Phoenix Tuner to confirm.

Use Self-test Snapshot to confirm reasonable values for current and voltage.

[image: ../../_images/bring-11.png]

Getting sensor data

Sensor data can also be retrieved using the base FRC API available in LabVIEW/C++/Java.
See WPI/NI/FRC documentation for how.

DriverStation Logs

Driver Station logs are automatically generated during normal FRC use. This includes current logging on all PDP Wago channels. Review WPI/NI/FRC documentation for how leverage this.

2015 Kick off Kit PDPs

There is a known issue with 2015 Kickoff-Kit PDPs where the PDP will not appear on CAN bus and/or LEDs will be red, despite all other devices on the CAN bus functioning properly. This is due to an ESD vulnerability that only exists in the initial manufacture run in 2014. Every season PDP afterwards does not have this issue.

Manufacture date of the PDP can be checked in Tuner. Any PDP with a manufacture date of August 14, 2014 may have this issue. No other PDPs (even those with other 2014 manufacture dates) are known to be affected.

[image: ../../_images/pdp-2014.png]
These PDPs do correctly provide power and terminate the CAN bus with no compromises. However, the current measurement features may not be correct or available on this version of PDP. If such a PDP is re-used or re-purposed, we recommend using it on your practice robot or for bench setups, and not for competition.

 Bring Up: Talon FX/SRX and Victor SPX

Bring Up: Talon FX/SRX and Victor SPX

At this point all Talon and Victors should appear in Tuner with up to date firmware. The next goal is to drive the motor controller manually.
This is done to confirm/test:

	Motor and motor wiring

	Transmission/Linkage

	Mechanism design

	Motor Controller drive (both directions)

	Motor Controller sensor during motion

Note

Talon FX/SRX and Victor SPX can be used with PWM or CAN bus. This document covers the CAN bus use-case.

Before we enable the motor controller, first check or reset the configs in the next section.

Factory Default Motor Controller

Open the config view to see all persistent settings in the motor controller.
This can be done in the config tab (Windows => Config).

Select the Victor or Talon in the center-top dropdown. This will reveal all persistent config settings.

Press Factory Default to default the motor controller settings so that it has predicable behavior.

[image: ../../_images/bring-16.png]

Tip

Right-click anywhere in the property inspector and select Collapse-all to collapse each config group.

Tip

Other configs can be set in this view for testing purposes. For example, you may want to restrict the maximum output for testing via the Peak output settings under “Motor Output”.

Tip

When a setting is modified, it is set to bold to indicate that it is pending. The bold state will clear after you Save.

Tip

If changing a config live in the robot controller, use the Refresh/Revert button to confirm setting in Tuner.

Note

CTRE devices can be factory defaulted via the API, and thru the B/C mechanical button.

Note

Neutral Mode will not change during factory default as it is stored separately from the other persistent configs.

Configuration

Configurable settings are persistent settings that can be modified via the Phoenix API (from robot code) or via Tuner (Config tab). They can also be factory defaulted using either method.

Configs are modified via the config* routines and LabVIEW Vis. There are two general methods for robust operation of a robot. Additionally you can modify the configs via Tuner.

Method 1 – Use the configAll API

Starting with 2019, there is a single routine/VI for setting all of the configs in a motor controller.
This ensures that your application does not need to be aware of every single config in order to reliably configure a fresh or unknown motor controller.

This is the recommend API for new robot projects.

Tip

Config structure/object defaults all values to their factory defaults. This means generally you only need to change the settings you care about.

Tip

When using C++/Java, leverage the IntelliSense (Auto-complete) features of the IDE to quickly discover the config settings you need.

Method 2 – Factory Default and config* routines

Phoenix provides individual config* routines for each config setting.
Although this is adequate when the number of configs was small, this can be difficult to manage due to the many features/configs in the CTRE motor controllers.

If using individual config routines, we recommend first calling the configFactoryDefault routine/VI to ensure motor controller is restored to a known state, thus allowing you to only config the settings that you intend to change.

This is recommend for legacy applications to avoid porting effort.

Method 3 – Use Tuner

Tuner can be used to get/set/export/import the configs.

However, it is highly recommended to ultimately set them via the software API. This way, in the event a device is replaced, you can rely on your software to properly configured the new device, without having to remember to use Tuner to apply the correct values.

A general recommendation is to:

	Configure all devices during robot-bootup using the API,

	Use Tuner to dial values quickly during testing/calibration.

	Export the settings so they are not lost.

	Update your software config values so that Tuner is no longer necessary.

Control Signals

The majority of the behavior in the Talon/Victor is controlled via configs, however there is a small number of control signals that are controlled via the API.

This list includes:

	Current Limit Enable (though the thresholds are configs)

	Voltage Compensation Enable (though the nominal voltage is a config)

	Control Mode and Target/Output demand (percent, position, velocity, etc.)

	Invert direction and sensor phase

	Closed-loop slot selection [0,3] for primary and aux PID loops.

	Neutral mode override (convenient to temporarily override configs)

	Limit switch override (convenient to temporarily override configs)

	Soft Limit override (convenient to temporarily override configs)

	Status Frame Periods

These control signals do not require periodic calls to ensure they “stick”. All of the above signals are automatically restored even after motor controller is power cycled during use except for Status Frame Periods, which can be manually restore by polling for device resets via hasResetOccurred().

Note

WPI motor safety features may require periodic calls to Set() if team software has chosen to enable it.

Note

The override control signals are useful for applications that require temporarily disabling or changing behavior. For example, overriding-disable the soft limits while performing a self-calibration routine to tare sensors, then restoring soft limits for robot operation.

Note

The routines to manipulate control signals are not prefixed with config* to highlight that they are not configs

Test Drive with Tuner

Navigate to the control tab to view the control interface. Notice there are two enable/disable buttons. One is for non-FRC style robot-enable (alternative to the Driver Station enable), and one is for Motor Controller Control-Enable.

Press on the question mark next to the robot disabled/enabled button.

[image: ../../_images/bring-17.png]
This will reveal the full explanation of how to safely enable your motor controller.
Follow the appropriate instructions depending on if you want to use Driver Station for your robot-enable.

[image: ../../_images/bring-18.png]

Setting up non-FRC Control

In order to enable without the Driver Station you must use a non-roboRIO platform and disconnect the roboRIO from the CAN bus.

With an FRC roboRIO, you must always use the Driver Station to enable.

Confirm FRC Unlock

Self-test Snapshot Motor Controller to confirm device FRCLocked = 0.

If device is FRC Locked (=1), use factory default in the config tab to clear the state. Note that if an FRC roboRIO is on the CAN bus, the motor controller will immediately FRC Lock again.

Note

Use the config export tool if you need to keep your config settings.

[image: ../../_images/bring-20.png]

Control tab

Press both Robot Enabled and Control Enabled.
At this point you can use the track bar to drive the Victor/Talon.

Note

If you do connect with a roboRIO, the Talon/Victor will FRC Lock again. At which point you must use the driver station to enable, and you no longer need to use the non-FRC Robot enable in Tuner.

Note

Spacebar or enter can be used to clear the control tab and neutral the selected motor controller.

[image: ../../_images/bring-21.png]

Plot tab

Now open the Plot window. Drive the motor controller while observing the plot.
Confirm the blue motor output curve matches LED behavior and trackbar.
Confirm motor movement follows expectations.

Note

Press the Plot enable button to effectively pause the plot for review

Note

Use the Zoom buttons to select whether the mouse adjust the Y or X axis.

Note

If using a Victor SPX, current-draw will always read zero (SPX does not have current-measurement features).

[image: ../../_images/bring-22.png]

Tip

Plot can be used anytime, regardless of what is commanding the motor controller (FRC or non-FRC).

Test Drive with Robot Controller

Next we will create control software in the roboRIO. Currently this is necessary for more advanced control. This is also required for controlling your robot during competition.

Tip

The latest version of Tuner allows for testing most closed-loop control modes without writing software.

Java: Sample driving code

Below is a simple example that reads the Joystick and drives the Talon

package frc.robot;

import com.ctre.phoenix.motorcontrol.ControlMode;
import com.ctre.phoenix.motorcontrol.can.TalonSRX;

import edu.wpi.first.wpilibj.Joystick;
import edu.wpi.first.wpilibj.TimedRobot;

public class Robot extends TimedRobot {
 TalonSRX _talon0 = new TalonSRX(0); // Change '0' to match device ID in Tuner. Use VictorSPX for Victor SPXs
 Joystick _joystick = new Joystick(0);

 @Override
 public void teleopPeriodic() {
 double stick = _joystick.getRawAxis(1);
 _talon0.set(ControlMode.PercentOutput, stick);
 }
}

Tip

Image below can be dragged/dropped into LabVIEW editor.

[image: ../../_images/mc-lv-1.png]
Deploy the project, and confirm success.

Note

WPI’s terminal output may read “Build” successful despite the project was deployed.

[image: ../../_images/bring-23.png]

Note

Before you enable the DS, spin the Joystick axis so it reaches the X and Y extremities are reached. USB Gamepads calibrate on-the-fly so if the Gamepad was just inserted into the DS, it likely has not auto detected the max mechanical range of the sticks.

Note

Make sure joystick is detected by the DS before enabling.

Note

getRawAxis may not return a positive value on forward-stick. Confirm this by watching Talon/Victor LED. Green suggests a positive output.

Enable the Driver Station and confirm:

	motor drive in both directions using gamepad stick.

	motor controller LEDs show green for forward and red for reverse

Disable Driver Station after finished testing.

Note

If the LED is solid orange than use Tuner to determine the cause. Self-test Snapshot will report the current state of the motor controller (do this while troubleshooting). Confirm firmware is up to date.

Open-Loop Features

After some rudimentary testing, you will likely need to configure several open-loop features of the Talon SRX and Victor SPX.

Note

We recommend configuring Inverts and Followers first.

Inverts

To determine the desired invert of our motor controller, we will add two more lines of call.
SetInverted is added to decide if motor should spin clockwise or counter clockwise when told to move positive/forward (green LEDs).

We also multiply the joystick so that forward is positive (intuitive). This can be verified by watching the console print in the Driver Station.

package frc.robot;
import com.ctre.phoenix.motorcontrol.*;
import com.ctre.phoenix.motorcontrol.can.*;

import edu.wpi.first.wpilibj.Joystick;
import edu.wpi.first.wpilibj.TimedRobot;

public class Robot extends TimedRobot {
 TalonSRX _talon0 = new TalonSRX(0);
 Joystick _joystick = new Joystick(0);

 @Override
 public void teleopInit() {
 _talon0.setInverted(false); // pick CW versus CCW when motor controller is positive/green
 }

 @Override
 public void teleopPeriodic() {
 double stick = _joystick.getRawAxis(1) * -1; // make forward stick positive
 System.out.println("stick:" + stick);

 _talon0.set(ControlMode.PercentOutput, stick);
 }
}

Tip

Image below can be dragged/dropped into LabVIEW editor.

[image: ../../_images/lv-invert-1.png]

Talon FX Specific Inverts

Talon FX has a new set of inverts that are specific to it, TalonFXInvertType.Clockwise and TalonFXInvertType.CounterClockwise. These new inverts allow the user to know exactly what direction the Falcon 500 will spin. These inverts are from the perspective of looking at the face of the motor.

Below is an image demonstrating the Falcon’s Clockwise rotation:

[image: ../../_images/falcon-clockwise.png]
And below is the Falcon’s CounterClockwise rotation:

[image: ../../_images/falcon-counter-clockwise.png]

Follower

If a mechanism requires multiple motors, than there are likely multiple motor controllers. The Follower feature of the Talon FX/SRX and Victor SPX is a convenient method to keep two or more motor controller outputs consistent. If you have an external sensor for closed-looping, connect that to the “master” Talon SRX (unless it is a remote sensor such as CANcoder/CANifier/Pigeon).

Below we’ve added a new Victor to follow Talon 0.

Generally, a follower is intended to match the direction of the master, or drive in the opposite direction depending on mechanical orientation. In previous seasons teams would have to update the bool true/false of the follower to match or oppose the master manually.

Starting in 2019, C++/Java users can set the setInverted(InvertType) to instruct the motor controller to either match or oppose the direction of the master instead.

package frc.robot;

import com.ctre.phoenix.motorcontrol.*;
import com.ctre.phoenix.motorcontrol.can.*;

import edu.wpi.first.wpilibj.Joystick;
import edu.wpi.first.wpilibj.TimedRobot;

public class Robot extends TimedRobot {
 TalonSRX _talon0 = new TalonSRX(0);
 VictorSPX _victor0 = new VictorSPX(0);
 Joystick _joystick = new Joystick(0);

 @Override
 public void teleopInit() {
 _victor0.follow(_talon0);

 _talon0.setInverted(false); // pick CW versus CCW when motor controller is positive/green
 _victor0.setInverted(InvertType.FollowMaster); // match whatever talon0 is
 //_victor0.setInverted(InvertType.OpposeMaster); // opposite whatever talon0 is
 }

 @Override
 public void teleopPeriodic() {
 double stick = _joystick.getRawAxis(1) * -1; // make forward stick positive
 System.out.println("stick:" + stick);

 _talon0.set(ControlMode.PercentOutput, stick);
 }
}

Tip

Image below can be dragged/dropped into LabVIEW editor.

[image: ../../_images/lv-follow-1.png]

Note

LabVIEW does not support using InvertType to follow master or oppose master

Enable the Driver Station and slowly drive both MCs from neutral. Confirm both LEDs are blinking the same color.

Disable Driver Station when complete.

To confirm motor controllers are truly driving in the same direction, disconnect the master motor controller from its motor.

Enable the Driver Station and confirm follower motor direction matches previously measured master motor direction.

Disable Driver Station when complete.

Open Tuner and select the master motor controller.

Open plot tab and enable plotter while driving motor controller

Confirm current plot is appropriate. If motors are free-spinning, then current should be near 0 if motor output is constant. When testing drive train, the robot should be rested on a crate/tote to ensure all wheels spin freely.

Select follower motor in Tuner, and confirm current via plot.

Note

Follower mode can be canceled by calling set() with any other control mode, or calling neutralOutput().

Note

Calling follow() in the periodic loop is not required, but also does not affect anything in a negative way.

Controlling Followers with Phoenix Tuner

Oftentimes you want to test/tune a mechanism with a master motor controller and one or more followers. This can be accomplished with Phoenix Tuner in the same manner as if there was only one controller, as long as the followers are configured to follow the master. This means you cannot run a temporary diagnostic server to control multiple motor controllers at the same time.

It is imperative to make sure the followers are configured correctly by following the steps above. The followers will use their settings from the user application, even when following a master controlled by Tuner.

Tip

This is the recommended way to tune two or more mechanically linked motors. By having one motor controller as a master, it will handle the PID closed looping while all followers match the applied output of the master.

Neutral Mode

You may note that when the motor output transitions to neutral, the motors free spin (coast) in the last direction they were driven. If the Talon/Victor is set to “coast” neutral mode, then this is expected. The neutral mode can also be set to “brake” to electrically common the motor leads during neutral, causing a deceleration that combats the spinning motor motion.

Tip

You can use Talon FX’s ConfigStatorCurrentLimit method to dial in how strong the brake is.

Note

SetNeutralMode() can be used change the neutral mode on the fly.

TalonSRX talon = new TalonSRX(0);
talon.setNeutralMode(NeutralMode.Brake);

Tip

Image below can be dragged/dropped into LabVIEW editor.

[image: ../../_images/lv-neutralmode-1.png]
Follower motor controllers have separate neutral modes than their masters, so you must choose both. Additionally, you may want to mix your neutral modes to achieve a partial electric brake when using multiple motors.

Neutral Deadband

A device’s neutral deadband is the region where the controller demotes its output to neutral. This can be configured in your robot code, with a default value of 0.04 or 4%, and a range of [0.001, 0.25] or [0.1%, 25%].

_talon.configNeutralDeadband(0.001); /* Configures _talon to use a neutral deadband of 0.1% */

Talon FX has 3 different deadband strategies based on its state. They are Simple, Continuous, and None.

A Simple deadband will demote any requested output within the region to neutral, and otherwise uphold the requested demand. An example of this is with a configured deadband of 4% and a requested output of 4% will be 0%, 5% output will be 5%, and 100% will be 100%. This is used in the majority of circumstances so it’s obvious that the requested output is the applied output outside the neutral deadband.

A Continuous deadband is similar to a simple deadband in that it demotes any requested output within the region to neutral, but outside the region it will scale the applied output so it’s continuous out of the deadband thresholds. This allows for a smooth transition out of neutral. With a 4% deadband, a requested output of 4% will result in an applied output of 0%, requesting 5% will bring it to 1%, and 100% will be 100%.

A None deadband will not uphold the deadband whatsoever. A deadband of 4% with 4% requested output will apply 4%, 5% is 5%, and 100% is 100%. This is used only in follower mode so you don’t have to configure the deadband of your followers, only of the master.

The below graph highlights this, exaggerrating the effect to make it obvious.

[image: ../../_images/neutral-deadband-strategy.png]
The below table details what neutral deadband strategy the Talon FX uses under the various states.

Talon FX Neutral Deadband Strategies

	Mode

	Condition

	Deadband Type

	PWM Control

	X

	Continuous

	Percent Output

	Voltage Compensation Disabled

	Continuous

	Percent Output

	Voltage Compensation Enabled

	Simple

	Closed Loop

	X

	Simple

	Auxiliary Follower

	X

	Simple

	Follower

	X

	None

Ramping

The motor controller can be set to honor a ramp rate to prevent instantaneous changes in throttle.
This ramp rate is in effect regardless of which mode is selected (throttle, slave, or closed-loop).

Ramp can be set in time from neutral to full using configOpenLoopRampRate().

Note

configClosedLoopRampRate() can be used to select the ramp during closed-loop (sensor) operations.

Note

The slowest ramp possible is ten seconds (from neutral to full), though this is quite excessive.

TalonSRX talon = new TalonSRX(0);
talon.configOpenloopRamp(0.5); // 0.5 seconds from neutral to full output (during open-loop control)
talon.configClosedloopRamp(0); // 0 disables ramping (during closed-loop control)

Tip

Images below can be dragged/dropped into LabVIEW editor.

[image: ../../_images/lv-openloopramp-1.png]
[image: ../../_images/lv-closedloopramp-1.png]

Peak/Nominal Outputs

Often a mechanism may not require full motor output. The application can cap the output via the peak forward and reverse config setting (through Tuner or API).

Additionally, the nominal outputs can be selected to ensure that any non-zero requested motor output gets promoted to a minimum output. For example, if the nominal forward is set to +0.10 (+10%), then any motor request within (0%, +10%) will be promoted to +10% assuming request is beyond the neutral dead band. This is useful for mechanisms that require a minimum output for movement, and can be used as a simpler alternative to the kI (integral) component of closed-looping in some circumstances.

Voltage Compensation

Talon FX/SRX and Victor SPX can be configured to adjust their outputs in response to the battery voltage measurement (in all control modes). Use the voltage compensation saturation config to determine what voltage represents 100% output.

Then enable the voltage compensation using enableVoltageCompensation().

Advanced users can adjust the Voltage Measurement Filter to make the compensation more or less responsive by increasing or decreasing the filter. This is available via API and via Tuner

TalonSRX talon = new TalonSRX(0);
talon.configVoltageCompSaturation(11); // "full output" will now scale to 11 Volts for all control modes when enabled.
talon.enableVoltageCompensation(true); // turn on/off feature

Tip

Image below can be dragged/dropped into LabVIEW editor.

[image: ../../_images/lv-voltagecomp-1.png]

Current Limit

Legacy API

Talon FX/SRX supports current limiting in all control modes.

The limiting is characterized by three configs:

	Peak Current (Amperes), threshold that must be exceeded before limiting occurs.

	Peak Time (milliseconds), thresholds that must be exceed before limiting occurs

	Continuous Current (Amperes), maximum allowable current after limiting occurs.

TalonSRX talon = new TalonSRX(0);
talon.configPeakCurrentLimit(30); // don't activate current limit until current exceeds 30 A ...
talon.configPeakCurrentDuration(100); // ... for at least 100 ms
talon.configContinuousCurrentLimit(20); // once current-limiting is actived, hold at 20A
talon.enableCurrentLimit(true);

Tip

Image below can be dragged/dropped into LabVIEW editor.

[image: ../../_images/lv-currentlimit-1.png]
If enabled, Talon SRX will monitor the supply-current looking for a conditions where current has exceeded the Peak Current for at least Peak Time.
If detected, output is reduced until current measurement is at or under Continuous Current.

Note

If Peak current limit is set less than continuous limit, peak current limit will be set equal to continuous current limit.

Once limiting is active, current limiting will deactivate if motor controller can apply the requested motor output and still measure current-draw under the Continuous Current Limit.

[image: ../../_images/current-limit-1.png]
After setting the three configurations, current limiting must be enabled via enableCurrentLimit() or LabVIEW VI.

Note

Use Self-test Snapshot to confirm if Current Limiting is occurring

Note

If peak limit is less than continuous limit, peak is set equal to continuous

Note

If you only want continuous limiting, you should set peak limit to 0

New API in 2020

Talon FX supports both stator(output) current limiting and supply(input) current limiting.

Supply current is current that’s being drawn at the input bus voltage.
Stator current is current that’s being drawn by the motor.

Supply limiting (supported by Talon SRX and FX) is useful for preventing breakers from tripping in the PDP.

Stator limiting (supported by Talon FX) is useful for limiting acceleration/heat.

The new API leverages the configSupplyCurrentLimit and configStatorCurrentLimit routines. The configs are similar to the existing legacy API, but the configs have been renamed to better communicate the design intent. For example, instead of configPeakCurrentLimit, the setting is referred to as triggerThresholdCurrent.

/**
 * Configure the current limits that will be used
 * Stator Current is the current that passes through the motor stators.
 * Use stator current limits to limit rotor acceleration/heat production
 * Supply Current is the current that passes into the controller from the supply
 * Use supply current limits to prevent breakers from tripping
 *
 * enabled | Limit(amp) | Trigger Threshold(amp) | Trigger Threshold Time(s) */
 _tal.configStatorCurrentLimit(new StatorCurrentLimitConfiguration(true, 20, 25, 1.0));
 _tal.configSupplyCurrentLimit(new SupplyCurrentLimitConfiguration(true, 10, 15, 0.5));

An example of this is available on our Github Examples [https://github.com/CrossTheRoadElec/Phoenix-Examples-Languages] repository

Reading status signals

The Talon FX/SRX and Victor SPX transmit most of their status signals periodically, i.e. in an unsolicited fashion. This improves bus efficiency by removing the need for “request” frames, and guarantees that the signals necessary for the wide range of use cases they support are available.

These signals are available in API regardless of what control mode the Talon SRX is in.
Additionally the signals can be polled using Phoenix Tuner using the Self-test Snapshot button.

Included in the list of signals are:

	Quadrature Encoder Position, Velocity, Index Rise Count, Pin States (A, B, Index)

	Analog-In Position, Analog-In Velocity, 10bit ADC Value,

	Battery Voltage, Current, Temperature

	Fault states, sticky fault states,

	Limit switch pin states

	Applied Throttle (duty cycle) regardless of control mode.

	Applied Control mode: Voltage % (duty-cycle), Position/Velocity closed-loop, or slave follower.

	Brake State (coast vs brake)

	Closed-Loop Error, the difference between closed-loop set point and actual position/velocity.

	Sensor Position and Velocity, the signed output of the selected Feedback device (robot must select a Feedback device, or rely on default setting of Quadrature Encoder).

	Integrated Sensor (Talon FX).

	Magnet position and strength (CANCoder).

Tip

In LabVIEW, these signals can all be obtained from the “Get” VI from the motor controller’s sub-pallette. Choose the type of signals desired from the VI’s drop-down menu.

[image: ../../_images/bring-mc-getVI.png]

Limit Switches

Talon SRX and Victor SPX have limit features that will auto-neutral the motor output if a limit switch activates.
Talon SRX in particular can automatically do this when limit switches are connected via the Gadgeteer feedback port.

An “out of the box” Talon will default with the limit switch setting of “Normally Open” for both forward and reverse. This means that motor drive is allowed when a limit switch input is not closed (i.e. not connected to ground). When a limit switch input is closed (is connected to ground) the Talon SRX will disable motor drive and individually blink both LEDs red in the direction of the fault (red blink pattern will move towards the M+/white wire for positive limit fault, and towards M-/green wire for negative limit fault).

Since an “out of the box” Talon will likely not be connected to limit switches (at least not initially) and because limit switch inputs are internally pulled high (i.e. the switch is open), the limit switch feature is default to “normally open”. This ensures an “out of the box” Talon will drive even if no limit switches are connected.

For more information on Limit Switch wiring/setup, see the Talon SRX User’s Guide.

[image: ../../_images/bring-24.png]
Limit switch features can be disabled or changed to “Normally Closed” in Tuner and in API.

Note

When the source is set to Gadgeteer, the “Device ID” field is ignored. This config is used for remote limit switches (see next section).

Confirm the limit switches are functional by applying a weak positive motor output while tripping the forward limit switch.

Note

The motor does not have to be physically connected to the motor-controller if tester can artificially assert physical limit switch.

/* Configured forward and reverse limit switch of Talon to be from a feedback connector and be normally open */
Hardware.leftTalonMaster.configForwardLimitSwitchSource(LimitSwitchSource.FeedbackConnector, LimitSwitchNormal.NormallyOpen, 0);
Hardware.leftTalonMaster.configReverseLimitSwitchSource(LimitSwitchSource.FeedbackConnector, LimitSwitchNormal.NormallyOpen, 0);

Limit Switch Override Enable

The enable state of the limit switches can be overridden in software. This can be called at any time to enable or disable both limit switches.

Generally you should call this instead of a config if you want to dynamically change whether you are using the limit switch or not inside a loop. This value is not persistent across power cycles.

/* Limit switches are forced disabled on Talon and forced enabled on Victor */
Hardware.leftTalonMaster.overrideLimitSwitchesEnable(false);
Hardware.rightVictorMaster.overrideLimitSwitchesEnable(true);;

Limit Switch As Digital Inputs

Limit switches can also be treated as digital inputs. This is done in Java/C++ by using the isFwdLimitSwitchClosed & isRevLimitSwitchClosed method.

_talon.getSensorCollection().isFwdLimitSwitchClosed();
_talon.getSensorCollection().isRevLimitSwitchClosed();

Note

The sensor being closed returns true in all cases, and the sensor being open returns false in all cases, regardless of normally open/normally closed setting. This ensures there is no ambiguity in the function name.

Remote Limit Switches

A Talon SRX or Victor SPX can use a remote sensor as the limit switch (such as another Talon SRX or CANifier).

Change the Limit Forward/Reverse Source to Remote Talon or Remote CANifier. Then config the Limit Forward/Reverse Device ID for the remote Talon or CANifier.

/* Configured forward and reverse limit switch of a Victor to be from a Remote Talon SRX with the ID of 3 and normally closed */
Hardware.rightVictorMaster.configForwardLimitSwitchSource(RemoteLimitSwitchSource.RemoteTalonSRX, LimitSwitchNormal.NormallyClosed, 3, 0);
Hardware.rightVictorMaster.configReverseLimitSwitchSource(RemoteLimitSwitchSource.RemoteTalonSRX, LimitSwitchNormal.NormallyClosed, 3, 0);

Use Self-test Snapshot on the motor-driving motor controller to confirm limit switches are interpreted correctly. If they are not correct, then Self-test Snapshot the remote device to determine the issue.

Soft Limits

Soft limits can be used to disable motor drive when the “Sensor Position” is outside of a specified range. Forward throttle will be disabled if the “Sensor Position” is greater than the Forward Soft Limit. Reverse throttle will be disabled if the “Sensor Position” is less than the Reverse Soft Limit. The respective Soft Limit Enable must be enabled for this feature to take effect.

/* Talon configured to have soft limits 10000 native units in either direction and enabled */
rightMaster.configForwardSoftLimitThreshold(10000, 0);
rightMaster.configReverseSoftLimitThreshold(-10000, 0);
rightMaster.configForwardSoftLimitEnable(true, 0);
rightMaster.configReverseSoftLimitEnable(true, 0);

The settings can be set and confirmed in Phoenix Tuner

 Troubleshooting and Frequently Asked Questions

Troubleshooting and Frequently Asked Questions

Driver Station Messages

What do I do when I see errors in Driver Station?

DS Errors should be addressed as soon as they appear. This is because:

	Phoenix API will report if a device is missing, not functioning, has too-old firmware, etc.

	If errors are numerous and typical, then users cannot determine if there is a new problem to address.

	A large stream of errors can bog down the DriverStation/roboRIO. Phoenix Framework has a debouncing strategy to ensure this does not happen, but not all libraries do this.

Phoenix DS errors occur on call. Meaning VIs/API functions must be called in robot code for any errors to occur.
When an error does occur, a stack trace will report where in the robot code to look.

The Debouncing Strategy that Phoenix uses is 3 seconds long.
Phoenix keys a new error on device ID & function. This is to ensure that all unique errors are logged while making sure the DriverStation/roboRIO does not generate excessive errors.

Driver Station says the firmware is too old.

[image: ../../_images/faq-1.png]
Use Phoenix Tuner to update the firmware of the device.

Note that the robot application must be restarted for the firmware version check to clear. This can be done by redeploying the robot application or simply restarting the robot.

Driver Station says the firmware could not be retrieved and to check the firmware and ID.

[image: ../../_images/faq-2.png]
This usually indicates that your device ID is wrong in your robot software, or your firmware is very old.

Use Phoenix Tuner to check your device IDs and make sure your firmware is up-to-date.

Driver Station Says “ERROR 7 Call Library Function Node…”

[image: ../../_images/faq-LV-Error7.png]
This can be seen when the Phoenix libraries are not present on the roboRIO.

This can be fixed by following the process to prepare the roboRIO for LabVIEW.

Driver Station Says Variant To Data in …

[image: ../../_images/faq-3.png]
This is usually caused by a diagram disable structure around a MotorController or EnhancedMotorController VI

[image: ../../_images/faq-4.png]
In order to fix this, you must wire the device reference through the enabled state of the diagram disabled block

[image: ../../_images/faq-5.png]
[image: ../../_images/faq-6.png]

PCM

My compressor turns on and I have air pressure, but why isn’t my solenoid turning on?

Check the red LED for the Solenoid channel. If the LED turns on as expected, make sure the Solenoid Voltage Jumper is set to the proper voltage (12 or 24 volts).

[image: ../../_images/pcm-sol-jumper.png]

Warning

If you attempt to drive 12V Solenoids with 24V, you will damage the solenoids. If you attempt to drive 24V Solenoids with 12V, you may damage the solenoids.

Why isn’t the Compressor turning on? Why does the PCM COMP LED not turn on?

In order for the compressor output to activate, certain conditions have to be met.

	The robot must be enabled.

	Robot software must have a pneumatics related object (compressor or solenoid).

	PCM must be powered/wired to CAN bus.

	PCM’s device ID must match robot software.

If any of these conditions are not met, the compressor will not activate. The best method for root-causing wiring or software issues is to check the following conditions and symptoms in sequential order.

PCM must be powered.

This can be checked by ensuring the STATUS LED is illuminated. If the STATUS LED is off, recheck the power path from the PDP to the PCM. If using the fused output of the PDP, check the fuse. This can be done by removing the fuse and checking its continuity/DC-resistance, or simply by measuring the voltage across the power/ground wires that connect into the PCM’s Vin Weidmuller input (should be approximately battery voltage or ~12V).

PCM must be on CAN Bus

The PCM must be connected to the CAN bus chain. If a PCM does not see a healthy CAN bus it will blink the STATUS LED red (See User’s Guide for LED States).

Additionally the PCM will not appear in Phoenix Tuner or will report loss of communication. This is important to check because a red STATUS LED pattern may also reflect a fault condition (if robot is enabled). To distinguish a fault condition, confirm the PCM does appear in the configuration page, and use the Self-test Snapshot to identify which fault condition is occurring.

If these negative symptoms are noticed, recheck CAN bus harness and termination resistors. If several CAN devices are also blinking red then check the CANH/CANL chain. If it’s just the PCM then inspect the Weidmuller CAN contacts on the PCM.

If the PCM CAN connection is healthy, then it should slowly blink green (when robot is disabled). It may blink orange instead to signal that a sticky fault has been logged. Use the Self-test Snapshot in Phoenix Tuner to inspect and clear sticky faults.

More information on faults and sticky faults is available under Faults-pcm.

Confirm PCM is not faulting.

At this point the PCM should appear in the Phoenix Tuner CAN Devices tab. Using the Self-test Snapshot, determine if any faults are occurring “Now”. Checking the sticky faults can also be helpful for identifying recent faults.

[image: ../../_images/pcm-selftest-1.png]
More information on faults and sticky faults is available under Faults-pcm.

The Robot must be enabled, Robot Software must create a pneumatics related object.

The PCM should appear in the Phoenix Tuner CAN Devices tab, however when enabling the robot, the STATUS LED may not transition to strobe green. Additionally, when performing the Self-test Snapshot, the report may read “PCM IS NOT ENABLED”

[image: ../../_images/pcm-selftest-2.png]
This is typical if the robot is not enabled OR if the robot application did not create any Solenoid or Compressor objects. This is how the programming API signals the intent of using pneumatics, and thus enabling the PCM.

Make sure the robot is truly enabled by looking at the Driver Station.

Instructions for creating a Solenoid, DoubleSolenoid or Compressor object in LabVIEW, C++, and Java can be found at https://docs.wpilib.org, (search for keyword “PCM”). Creating a single object of any pneumatics related type is sufficient for enabling the PCM (and therefore enabling compressor closed-loop).

Note

In order to create a software object for Solenoid or Compressor, typically the caller may specify the CAN Device ID (not specifying it typically defaults to selecting Device ID zero). This value must match what is specified in Phoenix Tuner. For more information see Set Device IDs.

Tip

Since PCMs default with a device ID of zero, users only using one PCM may prefer to leave the default device ID. PCM Device ID range is allowed to overlap with the device ID of other non-PCM CAN devices.

Pressure Switch must be wired and must signal “not full”.

Even though a robot and PCM are enabled, the compressor output will not activate if the pressure switch is not connected or is indicating full pressure. The only way to inspect this reliably is to perform the Self-test Snapshot in Phoenix Tuner.

[image: ../../_images/pcm-selftest-3.png]
If Self-test Snapshot is reading “pressure is full” when the pressure gauge clearly is not full, recheck the wiring on the pressure switch and PCM.

The COMP LED must illuminate green.

If the COMP LED is off then the PCM is not activating the compressor output. The Self-test Snapshot is the best method for determining why. If the PCM is not present in the Phoenix Tuner recheck section the first 2 steps of this process. If the PCM is present and not enabled, recheck the robot program. If the Compressor is not “close-looped on sensor”, then the robot application must be using programming API to disable it. If pressure is erroneously reading “full”, recheck the previous step.

Compressor must be wired and functional.

If the COMP LED is illuminated green but the compressor still is not activating, then there may be a wiring issue between the PCM and the compressor. A voltmeter can be used to confirm that the PCM is applying 12V across the high and low side compressor output, and that 12V is reaching the compressor.

 Driverstation

Driverstation

	Imaging your Classmate (Veteran Image Download)

	FRC Driver Station Powered by NI LabVIEW

	Programming Radios for FMS Offseason

	Troubleshooting Dashboard Connectivity

	Driver Station Best Practices

	Driver Station Log File Viewer

 Imaging your Classmate (Veteran Image Download)

Imaging your Classmate (Veteran Image Download)

Note

Veteran teams are not required to re-image their classmate

This document describes the procedure for creating a bootable USB drive to restore the FRC image on a Classmate computer. If you do not wish to re-image your Classmate then you can start with the appropriate document for C++/Java, LabVIEW, or DS only.

Prerequisites

	E09, E11, E12, or E14 Classmate computer or Acer ES1 computer

	16GB or larger USB drive

	7-Zip software installed (download here [https://www.7-zip.org]). As of the writing of this document, the current released version is 19.00 (2019-02-21).

	RMprepUSB software installed (download here [https://www.rmprepusb.com/documents/release-2-0]). Scroll down the page and select the stable (Full) version download link. As of the writing of this document, the current stable version is 2.1.743e.

Download the Computer Image

[image: ../../../_images/download-the-computer-image.png]
Download the image from the FIRST FRC Driver Station System Image Portal [https://frc-events.firstinspires.org/services/DSImages/]. There are several computer images available, one for each model. On the download site, select the option that matches your computer by clicking the button below the image. Due to the limited size of the hard drive in the E09, it is supported with a DS/Utilities image only and does not have the IDEs for LabVIEW or C++/Java installed. All other images have the LabVIEW base installation already present.

Note

These images only install the prerequisite core FRC software, it is still necessary to install the FRC specific updates. See the Update Software step for more information.

Warning

Due to computer availability, the E14 image provided is the 2018 image. If using this image, teams may need to remove the old IDE (LabVIEW or Eclipse) and install the new IDE.

Preparation

	Place the image file downloaded from the site to a folder on your root drive (e.g. C:\2016_Image).

	Connect 16GB or larger USB Flash drive to the PC to use as the new restoration drive.

RMPrep

[image: ../../../_images/rmprep.png]
Start/Run RMprepUSB

Select USB Drive

Set Partition Size

[image: ../../../_images/set-partition-size.png]
Set Partition Size to MAX

Set Volume Label

[image: ../../../_images/set-volume-label.png]
Set Volume Label to Generic

Set Bootloader Option

[image: ../../../_images/set-bootloader-option.png]
Select Bootloader Option “WinPE v2/WinPE v3/Vista/Win7 bootable”

Select Filesystem

[image: ../../../_images/select-filesystem.png]
Select NTFS Filesystem

Copy OS Files Option

[image: ../../../_images/copy-os-files-option.png]
Ensure the “Copy OS files after Format” box is checked

Locate Image

[image: ../../../_images/locate-image.png]
Select the “Choose Folder/File” button

Copy Files Dialog

[image: ../../../_images/copy-files-dialog.png]
Choose “No” and select your .7z image

Prepare Drive

[image: ../../../_images/prepare-drive.png]
All configuration settings are now complete. Select “Prepare Drive” to begin the process

Confirmation Dialog 1

[image: ../../../_images/confirmation-dialog-1.png]
Click “OK” to execute the command on the selected USB Flash drive. A Command Prompt will open showing the progress

Confirmation Dialog 2

[image: ../../../_images/confirmation-dialog-2.png]
Click “OK” to format the USB drive

Danger

ALL DATA ON THE DRIVE WILL BE ERASED!

Decryption

Note

If you are using an encrypted version of the image downloaded before kickoff you will
be prompted to enter the decryption key found at the end of the Kickoff video.

Copy Complete

[image: ../../../_images/copy-complete.png]
Once formatting is complete, the restoration files will be extracted and copied to the USB drive. This process should take ~15 minutes when connected to a USB 2.0 port. When all files have been copied, this message will appear, press OK to continue.

Eject Drive

[image: ../../../_images/eject-drive.png]
Press the “Eject Drive” button to safely remove the USB drive. The USB drive is now ready to be used to restore the image onto the PC.

Hardware Setup

	Make sure the computer is turned off, but plugged in.

	Insert the USB Thumb Drive into a USB port on the Driver Station computer.

Boot to USB

[image: ../../../_images/boot-to-usb.jpg]
Classmate:

	Power on the Classmate and tap the F11 key on the keyboard. Tapping the F11 key during boot will bring up the boot menu.

	Use the up/down keys to select the USB HDD: entry on the menu, then press the right arrow to expand the listing

	Use the up/down arrow keys on the keyboard to select the USB device (it will be called “Generic Flash Disk”). Press the ENTER key when the USB device is highlighted.

Acer ES1:

	Power on the computer and tap the F12 key on the keyboard. Tapping the F12 key during boot will bring up the boot menu.

	Use the up/down keys to select the USB HDD: Generic entry on the menu, then press the ENTER key when the USB device is highlighted.

Acer ES1: If pressing F12 does not pull up the boot menu or if the USB device is not listed in the boot menu, see “Checking BIOS Settings” at the bottom of this article.

Image the Classmate

[image: ../../../_images/image-the-classmate.png]

	To confirm that you want to reimage the Classmate, type “1” and press ENTER.

	Then, type “Y” and press ENTER. The Classmate will begin re-imaging. The installation will take 15-30 minutes.

	When the installation is complete, remove the USB drive.

	Restart the Classmate. The Classmate will boot into Windows.

Initial Driver Station Boot

The first time the Classmate is turned on, there are some unique steps, listed below, that you’ll need to take. The initial boot may take several minutes; make sure you do not cycle power during the process.

Note

These steps are only required during original startup.

Enter Setup

	Log into the Developer account.

	Click “Ask me later”.

	Click “OK”. The computer now enters a Set Up that may take a few minutes.

Activate Windows

	Establish an Internet connection.

	Once you have an Internet connection, click the Start menu, right click “Computer” and click “Properties”.

	Scroll to the bottom section, “Windows activation”, and Click “Activate Windows now”

	Click “Activate Windows online now”. The activation may take a few minutes.

	When the activation is complete, close all of the windows.

Microsoft Security Essentials

Navigate through the Microsoft Security Essentials Setup Wizard. Once it is complete, close all of the windows.

Acer ES1: Fix Wireless Driver

[image: ../../../_images/fix-wireless-driver.png]
Acer ES1 PC only!

The default wireless driver in the image may have issues with intermittent communication with the robot radio. The correct driver is in the image, but could not be set to load by default. To load the correct driver, open the Device Manager by clicking start, typing “Device Manager” in the box and clicking Device Manager.

Open Wireless Device Properties

[image: ../../../_images/open-wireless-device-properties.png]
Click on the arrow next to Network Adapters to expand it and locate the Wireless Network Adapter. Right click the adapter and select Properties.

Uninstall-Driver

[image: ../../../_images/uninstall-driver.png]
Click on the Driver tab, then click the Uninstall button. Click Yes at any prompts.

Scan for New Hardware

[image: ../../../_images/scan-for-new-hardware.png]
Right click on the top entry of the tree and click “Scan for hardware changes”. The wireless adapter should automatically be re-detected and the correct driver should be installed.

Update Software

In order for the Classmate images to be prepared on time, they are created before the final versions of the software were ready. To use the software for FRC some additional components will need to be installed. LabVIEW teams should continue with Installing the FRC Game Tools (All Languages). C++ or Java teams should continue Installing C++ and Java Development Tools for FRC.

Errors during Imaging Process

[image: ../../../_images/errors-during-imaging-process.png]
If an error is detected during the imaging process, the following screen will appear. Note that the screenshot below shows the error screen for the Driver Station-only image for the E09. The specific image filename shown will vary depending on the image being applied.

The typical reason for the appearance of this message is due to an error with the USB device on which the image is stored. Each option is listed below with further details as to the actions you can take in pursuing a solution. Pressing any key once this error message is shown will return the user to the menu screen shown in Image the Classmate.

Option 1

	Using same image on the existing USB Flash drive
	To try this option, press any key to return to the main menu and select #1. This will run the imaging process again.

Option 2

	Reload the same image onto the USB Flash drive using RMPrepUSB
	It’s possible the error message was displayed due to an error caused during the creation of the USB Flash drive (e.g. file copy error, data corruption, etc.) Press any key to return to the main menu and select #4 to safely shutdown the Classmate then follow the steps starting with RMPrep to create a new USB Restoration Key using the same USB Flash drive.

Option 3

	Reload the same image onto a new USB Flash drive using RMPrepUSB
	The error message displayed may also be caused by an error with the USB Flash drive itself. Press any key to return to the main menu and select #4 to safely shutdown the Classmate. Select a new USB Flash drive and follow the steps starting with RMPrep.

Option 4

	Download a new image
	An issue with the downloaded image may also cause an error when imaging. Press any key to return to the main menu and select #4 to safely shutdown the Classmate. Staring with Download the Classmate Image create a new copy of the imaging stick.

Checking BIOS Settings

[image: ../../../_images/checking-bios-settings.jpg]
If you are having difficulty booting to USB, check the BIOS settings to insure they are correct. To do this:

	Repeatedly tap the F2 key while the computer is booting to enter the BIOS settings

	Once the BIOS settings screen has loaded, use the right and left arrow keys to select the “Main” tab, then check if the line for “F12 Boot Menu” is set to “Enabled”. If it is not, use the Up/Down keys to highlight it, press Enter, use Up/Down to select “Enabled” and press Enter again.

	Next, use the Left/Right keys to select the “Boot” tab. Make sure that the “Boot Mode” is set to “Legacy”. If it is not, highlight it using UpDown, press Enter, highlight “Legacy” and press Enter again. Press Enter to move through any pop-up dialogs you may see.

	Press F10 to save any changes and exit.

 FRC Driver Station Powered by NI LabVIEW

FRC Driver Station Powered by NI LabVIEW

This article describes the use and features of the FRC Driver Station Powered by NI LabVIEW.

For information on installing the Driver Station software see this document.

Starting the FRC Driver Station

[image: ../../../_images/ds-icon.png]
The FRC Driver Station can be launched by double-clicking the icon on the Desktop or by selecting Start->All Programs->FRC Driver Station.

Setting Up the Driver Station

[image: ../../../_images/ds-setup.png]
The DS must be set to your team number in order to connect to your robot. In order to do this click the Setup tab then enter your team number in the team number box. Press return or click outside the box for the setting to take effect.

PCs will typically have the correct network settings for the DS to connect to the robot already, but if not, make sure your Network adapter is set to DHCP.

Status Pane

[image: ../../../_images/ds-status-pane.png]
The Status Pane of the Driver Station is located in the center of the display and is always visible regardless of the tab selected. It displays a selection of critical information about the state of the DS and robot:

	Team # - The Team number the DS is currently configured for. This should match your FRC team number. To change the team number see the Setup Tab.

	Battery Voltage - If the DS is connected and communicating with the roboRIO this displays current battery voltage as a number and with a small chart of voltage over time in the battery icon. The background of the numeric indicator will turn red when the roboRIO brownout is triggered. See roboRIO Brownout and Understanding Current Draw for more information.

	Major Status Indicators - These three indicators display major status items for the DS. The “Communications” indicates whether the DS is currently communicating with the FRC Network Communications Task on the roboRIO (it is split in half for the TCP and UDP communication). The “Robot Code” indicator shows whether the team Robot Code is currently running (determined by whether or not the Driver Station Task in the robot code is updating the battery voltage), The “Joysticks” indicator shows if at least one joystick is plugged in and recognized by the DS.

	Status String - The Status String provides an overall status message indicating the state of the robot, some examples are “No Robot Communication”, “No Robot Code”, “Emergency Stopped”, and “Teleoperated Enabled”. When the roboRIO brownout is triggered this will display “Voltage Brownout”.

Operation Tab

[image: ../../../_images/ds-operation-tab.png]
The Operations Tab is used to control the mode of the robot and provide additional key status indicators while the robot is running.

	Robot Mode - This section controls the Robot Mode. Practice Mode causes the robot to cycle through the same transitions as an FRC match after the Enable button is pressed (timing for practice mode can be found on the setup tab).

	Enable/Disable - These controls enable and disable the robot. See also Driver Station Key Shortcuts

	Elapsed Time - Indicates the amount of time the robot has been enabled

	PC Battery - Indicates current state of DS PC battery and whether the PC is plugged in

	PC CPU% - Indicates the CPU Utilization of the DS PC

	Window Mode - When not on the Driver account on the Classmate allows the user to toggle between floating (arrow) and docked (rectangle)

	Team Station - When not connected to FMS, sets the team station to transmit to the robot.

Note

When connected to the Field Management System the controls in sections 1, and 2 will be replaced by the words FMS Connected and the control in Section 7 will be greyed out.

Diagnostics Tab

[image: ../../../_images/ds-diagnostics-tab.png]
The Diagnostics Tab contains additional status indicators that teams can use to diagnose issues with their robot:

	DS Version - Indicates the Driver Station Version number

	roboRIO Image Version - String indicating the version of the roboRIO Image

	WPILib Version - String indicating the version of WPILib in use

	CAN Device Versions - String indicating the firmware version of devices connected to the CAN bus. These items may not be present if the CTRE Phoenix framework has not been loaded

	Memory Stats - This section shows stats about the roboRIO memory

	Connection Indicators - The top half of these indicators show connection status to various components.

	“Enet Link” indicates the computer has something connected to the ethernet port.

	“Robot Radio” indicates the ping status to the robot wireless bridge at 10.XX.YY.1.

	“Robot” indicates the ping status to the roboRIO using mDNS (with a fallback of a static 10.TE.AM.2 address).

	“FMS” indicates if the DS is receiving packets from FMS (this is NOT a ping indicator).

	Network Indicators - The second section of indicators indicates status of network adapters and firewalls. These are provided for informational purposes, communication may be established with one or more unlit indicators in this section

	“Enet” indicates the IP address of the detected Ethernet adapter

	“WiFi” indicates if a wireless adapter has been detected as enabled

	“USB” indicates if a roboRIO USB connection has been detected

	“Firewall” indicates if any firewalls are detected as enabled. Enabled firewalls will show in orange (Dom = Domain, Pub = Public, Prv = Private)

	Reboot roboRIO - This button attempts to perform a remote reboot of the roboRIO (after clicking through a confirmation dialog)

	Restart Robot Code - This button attempts to restart the code running on the robot (but not restart the OS)

Setup Tab

[image: ../../../_images/ds-setup-tab.png]
The Setup Tab contains a number of buttons teams can use to control the operation of the Driver Station:

	Team Number - Should contain your FRC Team Number. This controls the mDNS name that the DS expects the robot to be at. Shift clicking on the dropdown arrow will show all roboRIO names detected on the network for troubleshooting purposes.

	Dashboard Type - Controls what Dashboard is launched by the Driver Station. Default launches the file pointed to by the “FRC DS Data Storage.ini” file, by default this is Dashboard.exe in the Program Files\FRC Dashboard folder. LabVIEW attempts to launch a dashboard at the default location for a custom built LabVIEW dashboard, but will fall back to the default if no dashboard is found. SmartDashboard and Shuffleboard launch the respective dashboards included with the C++ and Java WPILib installation.

	Game Data - This box can be used for at home testing of the Game Data API. Text entered into this box will appear in the Game Data API on the Robot Side. When connected to FMS, this data will be populated by the field automatically.

	Practice Mode Timing - These boxes control the timing of each portion of the practice mode sequence. When the robot is enabled in practice mode the DS automatically proceeds through the modes indicated from top to bottom.

	Audio Control - This button controls whether audio tones are sounded when the Practice Mode is used.

USB Devices Tab

[image: ../../../_images/ds-usb-tab.png]
The USB Devices tab includes the information about the USB Devices connected to the DS

	USB Setup List - This contains a list of all compatible USB devices connected to the DS. Pressing a button on a device will highlight the name in green and put 2 *s before the device name

	Rescan - This button will force a Rescan of the USB devices. While the robot is disabled, the DS will automatically scan for new devices and add them to the list. To force a complete re-scan or to re-scan while the robot is Enabled (such as when connected to FMS during a match) press F1 or use this button.

	Device indicators - These indicators show the current status of the Axes, buttons and POV of the joystick.

	Rumble - For XInput devices (such as X-Box controllers) the Rumble control will appear. This can be used to test the rumble functionality of the device. The top bar is “Right Rumble” and the bottom bar is “Left Rumble”. Clicking and holding anywhere along the bar will activate the rumble proportionally (left is no rumble = 0, right is full rumble = 1). This is a control only and will not indicate the Rumble value set in robot code.

Re-Arranging and Locking Devices

[image: ../../../_images/ds-usb-rearrange.png]
The Driver Station has the capability of “locking” a USB device into a specific slot. This is done automatically if the device is dragged to a new position and can also be triggered by double clicking on the device. “Locked” devices will show up with an underline under the device. A locked device will reserve it’s slot even when the device is not connected to the computer (shown as grayed out and underlined). Devices can be unlocked (and unconnected devices removed) by double clicking on the entry.

Note

If you have two or more of the same device, they should maintain their position as long as all devices remain plugged into the computer in the same ports they were locked in. If you switch the ports of two identical devices the lock should follow the port, not the device. If you re-arrange the ports (take one device and plug it into a new port instead of swapping) the behavior is not determinate (the devices may swap slots). If you unplug one or more of the set of devices, the positions of the others may move, they should return to the proper locked slots when all devices are reconnected.

Example: The image above shows 4 devices:

	A Locked “Logitech Attack 3” joystick. This device will stay in this position unless dragged somewhere else or unlocked

	An unlocked “Logitech Extreme 3D” joystick

	An unlocked “Gamepad F310 (Controller)” which is a Logitech F310 gamepad

	A Locked, but disconnected “MadCatz GamePad (Controller)” which is a MadCatz Xbox 360 Controller

In this example, unplugging the Logitech Extreme 3D joystick will result in the F310 Gamepad moving up to slot 1. Plugging in the MadCatz Gamepad (even if the devices in Slots 1 and 2 are removed and those slots are empty) will result in it occupying Slot 3.

CAN/Power Tab

[image: ../../../_images/ds-can-power-tab.png]
The last tab on the left side of the DS is the CAN/Robot Power Tab. This tab contains information about the power status of the roboRIO and the status of the CAN bus:

	Comms Faults - Indicates the number of Comms faults that have occurred since the DS has been connected

	12V Faults - Indicates the number of input power faults (Brownouts) that have occurred since the DS has been connected

	6V/5V/3.3V Faults - Indicates the number of faults (typically cause by short circuits) that have occurred on the User Voltage Rails since the DS has been connected

	CAN Bus Utilization - Indicates the percentage utilization of the CAN bus

	CAN faults - Indicates the counts of each of the 4 types of CAN faults since the DS has been connected

If a fault is detected, the indicator for this tab (shown in blue in the image above) will turn red.

Messages Tab

[image: ../../../_images/ds-messages-tab.png]
The Messages tab displays diagnostic messages from the DS, WPILib, User Code, and/or the roboRIO. The messages are filtered by severity. By default, only Errors are displayed.

To access settings for the Messages tab, click the Gear icon. This will display a menu that will allow you to select the detail level (Errors, Errors+Warnings or Errors+Warnings+Prints), Clear the box, launch a larger Console window for viewing messages, or launch the DS Log Viewer.

Charts Tab

[image: ../../../_images/ds-charts-tab.png]
The Charts tab plots and displays advanced indicators of robot status to help teams diagnose robot issues:

	The top graph charts trip time in milliseconds in green (against the axis on the right) and lost packets per second in orange (against the axis on the left)

	The bottom graph plots battery voltage in yellow (against the axis on the left), roboRIO CPU in red (against the axis on the right), DS Requested mode as a continuous line on the bottom of the chart and robot mode as a discontinuous line above it.

	This key shows the colors used for the DS Requested and Robot Reported modes in the bottom chart.

	Chart scale - These controls change the time scale of the DS Charts

	This button launches the DS Log File Viewer

The DS Requested mode is the mode that the Driver Station is commanding the robot to be in. The Robot Reported mode is what code is actually running based on reporting methods contained in the coding frameworks for each language.

Both Tab

The last tab on the right side is the Both tab which displays Messages and Charts side by side

Driver Station Key Shortcuts

	F1 - Force a Joystick refresh.

	[+] + \ - Enable the robot (the 3 keys above Enter on most keyboards)

	Enter - Disable the Robot

	Space - Emergency Stop the robot. After an emergency stop is triggered the roboRIO will need to be rebooted before the robot can be enabled again.

Note

Space bar will E-Stop the robot regardless of if the Driver Station window has focus or not

 Programming Radios for FMS Offseason

Programming Radios for FMS Offseason

When using the FMS Offseason software, the typical networking setup is to use a single access point with a single SSID and WPA key. This means that the radios should all be programmed to connect to this network, but with different IPs for each team. The Team version of the FRC Bridge Configuration Utility has an FMS-Lite mode that can be used to do this configuration.

Before you begin using the software:

	Disable WiFi connections on your computer, as it may prevent the configuration utility from properly communicating with the bridge

	Make sure no devices are connected to your computer via ethernet, other than the wireless bridge.

Pre-Requisites

Note

Even though WPILib uses Java 11, the FRC Radio Configuration Utility requires Java 8.

The FRC Radio Configuration Utility requires the Java Runtime Engine (JRE). If you do not have Java installed, you can download the JRE from here [https://www.java.com/en/download/].

The FRC Radio Configuration Utility requires Administrator privileges to configure the network settings on your machine. The program should request the necessary privileges automatically (may require a password if run from a non-Administrator account), but if you are having trouble try running it from an Administrator account.

Application Notes

The Radio Kiosk will program the radio to enforce the 4 Mbps bandwidth limit on traffic exiting the radio over the wireless interface. In the home configuration (AP mode) this is a total, not a per client limit. This means that streaming video to multiple clients is not recommended.

The Kiosk has been tested on Windows 7, 8, and 10. It may work on other operating systems, but has not been tested.

Programmed Configuration

[image: ../../../_images/programming-radios-for-fms-offseason-1.png]
The Radio Configuration Utility programs a number of configuration settings into the radio when run. These settings apply to the radio in all modes (including at events). These include:

	Set a static IP of 10.TE.AM.1

	Set an alternate IP on the wired side of 192.168.1.1 for future programming

	Bridge the wired ports so they may be used interchangeably

	The LED configuration noted in the graphic above

	4Mb/s bandwidth limit on the outbound side of the wireless interface

	QoS rules for internal packet prioritization (affects internal buffer and which packets to discard if bandwidth limit is reached). These rules are Robot Control and Status (UDP 1110, 1115, 1150) >> Robot TCP & Network Tables (TCP 1735, 1740) >> Bulk (All other traffic).

When programmed with the team version of the Radio Configuration - Utility, the user accounts will be left at (or set to) the firmware - defaults for the DAPs only:

	Username: root

	Password: root

Note

It is not recommended to modify the configuration manually

Download the software

[image: ../../../_images/programming-radios-for-fms-offseason-2.png]
Download the latest FRC Radio Configuration Utility Installer from the WPILib project File Releases [https://usfirst.collab.net/sf/frs/do/listReleases/projects.wpilib/frs.frc_radio_configuration_utility].

Install the software

[image: ../../../_images/programming-radios-for-fms-offseason-3.png]
Double click on FRC_Radio_Configuration_MM_DD_YY.exe to launch the installer. Follow the prompts to complete the installation.

Part of the installation prompts will include installing WinPCap if it is not already present. The WinPCap installer contains a checkbox (checked by default) to start the WinPCap driver on boot. You should leave this box checked.

Launch the software

[image: ../../../_images/programming-radios-for-fms-offseason-4.png]
Use the Start menu or desktop shortcut to launch the program.

Note

If you need to locate the program it is installed to C:/Program Files (x86)/FRC Radio Configuration Utility. For 32-bit machines the path is C:/Program Files/FRC Radio Configuration Utility/

Allow the program to make changes, if prompted

[image: ../../../_images/programming-radios-for-fms-offseason-5.png]
If the your computer is running Windows Vista or Windows 7, a prompt may appear about allowing the configuration utility to make changes to the computer. Click “Yes” if the prompt appears.

Enter FMS-Lite Mode

[image: ../../../_images/programming-radios-for-fms-offseason-6.png]
Click Tools -> FMS-Lite Mode to enter FMS-Lite Mode.

Enter SSID

[image: ../../../_images/programming-radios-for-fms-offseason-7.png]
Enter the SSID (name) of your wireless network in the box and click OK.

Enter WPA Key

[image: ../../../_images/programming-radios-for-fms-offseason-8.png]
Enter the WPA key for your network in the box and click OK. Leave the box blank if you are using an unsecured network.

Program Radios

[image: ../../../_images/programming-radios-for-fms-offseason-9.png]
The Kiosk is now ready to program any number of radios to connect to the network entered. To program each radio, connect the radio to the Kiosk, set the Team Number in the box, and click Configure.

The kiosk will program OpenMesh, D-Link Rev A or D-Link Rev B radios to work on an offseason FMS network by selecting the appropriate option from the “Radio” dropdown.

Note

Bandwidth limitations and QoS will not be configured on the D-Link radios in this mode.

Changing SSID or Key

If you enter something incorrectly or need to change the SSID or WPA Key, go to the Tools menu and click FMS-Lite Mode to take the kiosk out of FMS-Lite Mode. When you click again to put the Kiosk back in FMS-Lite Mode, you will be re-prompted for the SSID and Key.

 Troubleshooting Dashboard Connectivity

Troubleshooting Dashboard Connectivity

We have received a number of reports of Dashboard connectivity issues from events. This document will help explain how to recognize if the Dashboard is not connected to your robot, steps to troubleshoot this condition and a code modification you can make.

LabVIEW Dashboard

This section discusses connectivity between the robot and LabVIEW dashboard

Recognizing LabVIEW Dashboard Connectivity

[image: ../../../_images/troubleshooting-dashboard-connectivity-1.png]
If you have an indicator on your dashboard that you expect to be changing it may be fairly trivial to recognize if the Dashboard is connected. If not, there is a way to check without making any changes to your robot code. On the Variables tab of the Dashboard, the variables are shown with a black diamond when they are not synced with the robot. Once the Dashboard connects to the robot and these variables are synced, the diamond will disappear.

Troubleshooting LabVIEW Dashboard Connectivity

If the Dashboard does not connect to the Robot (after the Driver Station has connected to the robot) the recommended troubleshooting steps are:

	Close the Driver Station and Dashboard, then re-open the Driver Station (which should launch the Dashboard).

	If that doesn’t work, restart the Robot Code using the Restart Robot Code button on the Diagnostics tab of the Driver Station

Improving Reliability of a Custom Dashboard

[image: ../../../_images/troubleshooting-dashboard-connectivity-2.png]
If you have created a custom LabVIEW dashboard there is a tweak you can make to the code to improve reliability of the initial connection. Locate the loop labeled Loop 7 in the Dashboard Main VI. Modify the loop according to the image above by adding a loop around the listener, 2 case statements, a Wait block and error wiring.

SmartDashboard

This section discusses connectivity between the robot and Java SmartDashboard

Recognizing SmartDashboard Connectivity

[image: ../../../_images/troubleshooting-dashboard-connectivity-3.png]
The typical way to recognize connectivity with the Java SmartDashboard is to add a Connection Indicator widget and to make sure your code is writing at least one key during initialization or disabled to trigger the connection indicator. The connection indicator can be moved or re-sized if the Editable checkbox is checked.

Troubleshooting SmartDashboard Connectivity

If the Dashboard does not connect to the Robot (after the Driver Station has connected to the robot) the recommended troubleshooting steps are:

	Restart the SmartDashboard (there is no need to restart the Driver Station software for the Java SmartDashboard)

	If that doesn’t work, restart the Robot Code using the Restart Robot Code button on the Diagnostics tab of the Driver Station

	If it still doesn’t connect verify that the Team Number is set properly in the Dashboard and that your Robot Code writes a SmartDashboard value during initialization or disabled

 Driver Station Best Practices

Driver Station Best Practices

This document was created by Steve Peterson, with contributions from Juan Chong, James Cole-Henry, Rick Kosbab, Greg McKaskle, Chris Picone, Chris Roadfeldt, Joe Ross, and Ryan Sjostrand. The original post and follow-up posts can be found here: https://www.chiefdelphi.com/t/paper-driver-station-best-practices/164429 and a mirror of the document can be found here.

Want to ensure the driver station isn’t a stopper for your team at the FIRST Robotics Competition (FRC) field? Building and configuring a solid driver station laptop is an easy project for the time between stop build day and your competition. Read on to find lessons learned by many teams over thousands of matches.

Prior To Departing For The Competition

	Dedicate a laptop to be used solely as a driver station. Many teams do. A dedicated machine allows you manage the configuration for one goal – being ready to compete at the field. Dedicated means no other software except the FRC-provided Driver Station software and associated Dashboard installed or running.

	Use a business-class laptop for your driver station. Why? They’re much more durable than the $300 Black Friday special at Best Buy. They’ll survive being banged around at the competition. Business-class laptops have higher quality device drivers, and the drivers are maintained for a longer period than consumer laptops. This makes your investment last longer. Lenovo ThinkPad T series and Dell Latitude are two popular business-class brands you’ll commonly see at competitions. There are thousands for sale every day on eBay. The laptop provided in recent rookie kits is a good entry level machine. Teams often graduate from it to bigger displays as they do more with vision and dashboards.

	Consider used laptops rather than new. The FRC Driver Station and dashboard software uses very few system resources, so you don’t need to buy a new laptop – instead, buy a cheap 4-5 year old used one. You might even get one donated by a used computer store in your area.

	Laptop recommended features

	RAM – 2GB of RAM is minimum, if you have a SSD.

	A display size of 13” or greater, with minimum resolution of 1440x1050.

	Ports

	A built-in Ethernet port is highly preferred. Ensure that it’s a full-sized port. The hinged Ethernet ports don’t hold up to repeated use.

	Use an Ethernet port saver to make your Ethernet connection. This extends the life of the port on the laptop. This is particularly important if you have a consumer-grade laptop with a hinged Ethernet port.

	If the Ethernet port on your laptop is dodgy, either replace the laptop (recommended) or buy a USB Ethernet dongle from a reputable brand. Many teams find that USB Ethernet is less reliable than built-in Ethernet, primarily due to cheap hardware and bad drivers. The dongles given to rookies in the KOP have a reputation for working well.

	2 USB ports minimum

	A keyboard. It’s hard to quickly do troubleshooting on touch-only computers at the field.

	A solid-state disk (SSD). If the laptop has a rotating disk, spend $50 and replace it with a SSD.

	Updated to the current release of Windows 10. Being the most common OS now seen at competitions, bugs are more likely to be found and fixed for Windows 10 than on older Windows versions.

	Install all Windows updates a week before the competition. This allows you time to ensure the updates will not interfere with driver station functions. To do so, open the Windows Update settings page and see that you’re up-to-date. Install pending updates if not. Reboot and check again to make sure you’re up to date.

	Change “Active Hours” for Windows Updates to prevent updates from installing during competition hours. Navigate to Start -> Settings -> Update & Security -> Windows Update, then select Change active hours. If you’re traveling to a competition, take time zone differences into account. This will help ensure your driver station does not reboot or fail due to update installing on the field.

	Remove any 3rd party antivirus or antimalware software. Instead, use Windows Defender on Windows 10. Since you’re only connecting to the internet for Windows and FRC software updating, the risk is low. Only install software on your driver station that’s needed for driving. Your goal here is to eliminate variables that might interfere with proper operation. Remove any unneeded preinstalled software (“crapware”) that came with the machine. Don’t use the laptop as your Steam machine for gaming back at the hotel the night before the event. Many teams go as far as having a separate programming laptop.

	Avoid managed Windows 10 installations from the school’s IT department. These deployments are built for the school environment and often come with unwanted software that interferes with your robot’s operation.

	Laptop battery / power

	Turn off Put the computer to sleep in your power plan for both battery and powered operation.

	Turn off USB Selective Suspend:

	Right click on the battery/charging icon in the tray, then select Power Options.

	Edit the plan settings of your power plan.

	Click the Change advanced power settings link.

	Scroll down in the advanced settings and disable the USB selective suspendsetting for both Battery and Plugged in.

	Ensure the laptop battery can hold a charge for at least an hour after making the changes above. This allows plenty of time for the robot and drive team to go through the queue and reach the alliance station without mains power.

	Bring a trusted USB and Ethernet cable for use connecting to the roboRIO.

	Add retention/strain relief to prevent your joystick/gamepad controllers from falling on the floor and/or yanking on the USB ports. This helps prevent issues with intermittent controller connections.

	The Windows user account you use to drive must be a member of the Administrator group.

At The Competition

	Turn off Windows firewall using these instructions.

	Turn off the Wi-Fi adapter, either using the dedicated hardware Wi-Fi switch or by disabling it in the Adapter Settings control panel.

	Charge the driver station when it’s in the pit.

	Remove login passwords or ensure everyone on the drive team knows the password. You’d be surprised at how often drivers arrive at the field without knowing the password for the laptop.

	Ensure your LabView code is deployed permanently and set to “run as startup”, using the instructions in the LabView Tutorial. If you must deploy code every time you turn the robot on, you’re doing it wrong.

	Limit web browsing to FRC related web sites. This minimizes the chance of getting malware during the competition.

	Don’t plan on using internet access to do software updates. There likely won’t be any in the venue, and hotel Wi-Fi varies widely in quality. If you do need updates, contact a Control System Advisor in the pit.

Before Each Match

	Make sure the laptop is on and logged in prior to the end of the match before yours.

	Close programs that aren’t needed during the match – e.g., Eclipse or LabView – when you are competing.

	Bring your laptop charger to the field. Power is provided for you in each player station.

	Fasten your laptop with hook-and-loop tape to the player station shelf. You never know when your alliance partner will have an autonomous programming issue and blast the wall.

	Ensure joysticks and controllers are assigned to the correct USB ports.

	In the USB tab in the FRC Driver Station software, drag and drop to assign joysticks as needed.

	Use the rescan button (F1) if joysticks / controllers do not appear green

	Use the rescan button (F1) during competition if joystick or controllers become unplugged and then are plugged back in or otherwise turn gray during competition.

 Driver Station Log File Viewer

Driver Station Log File Viewer

In an effort to provide information to aid in debugging, the FRC Driver Station creates log files of important diagnostic data while running. These logs can be reviewed later using the FRC Driver Station Log Viewer. The Log Viewer can be found via the shortcut installed in the Start menu or in the FRC Driver Station folder in Program Files.

Event Logs

The Driver Station logs all messages sent to the Messages box on the Diagnostics tab (not the User Messages box on the Operation tab) into a new Event Log file. When viewing Log Files with the Driver Station Log File Viewer, the Event Log and DSLog files are overlaid in a single display.

Log Viewer UI

[image: ../../../_images/logviewer.png]
The Log Viewer contains a number of controls and displays to aid in the analysis of the Driver Station log files:

	File Selection Box - This window displays all available log files in the currently selected folder. Click on a log file in the list to select it.

	Path to Log Files - This box displays the current folder the viewer is looking in for log files. This defaults to the folder that the Driver Station stores log files in. Click the folder icon to browse to a different location.

	Message Box - This box displays a summary of all messages from the Event Log. When hovering over an event on the graph this box changes to display the information for that event.

	Scroll Bar - When the graph is zoomed in, this scroll bar allows for horizontal scrolling of the graph.

	Voltage Filter - This control turns the Voltage Filter on and off (defaults to on). The Voltage Filter filters out data such as CPU %, robot mode and trip time when no Battery Voltage is received (indicating that the DS is no in communication with the roboRIO).

	AutoScale - This button zooms the graph out to show all data in the log.

	Match Length - This button scales the graph to approximately the length of an FRC match (2 minutes and 30 seconds shown). It does not automatically locate the start of the match, you will have to scroll using the scroll bar to locate the beginning of the Autonomous mode.

	Graph - This display shows graph data from the DS Log file (voltage, trip time, roboRIO CPU%, Lost Packets, and robot mode) as well as overlaid event data (shown as dots on the graph with select events showing as vertical lines across the entire graph). Hovering over event markers on the graph displays information about the event in the Messages window in the bottom left of the screen.

	Robot Mode Key - Key for the Robot Mode displayed at the top of the screen

	Major event key - Key for the major events, displayed as vertical lines on the graph

	Graph key - Key for the graph data

	Filter Control - Drop-down to select the filter mode (filter modes explained below)

	Tab Control - Control to switch between the Graph (Data and Events vs. Time) and Event List displays.

Using the Graph display

[image: ../../../_images/graphdisplay.png]
The Graph Display contains the following information:

	Graphs of Trip Time in ms (green line) and Lost Packets per second (displayed as blue vertical bars). In these example images Trip Time is a flat green line at the bottom of the graph and there are no lost packets

	Graph of Battery voltage displayed as a yellow line.

	Graph of roboRIO CPU % as a red line

	Graph of robot mode and DS mode. The top set of the display shows the mode commanded by the Driver Station. The bottom set shows the mode reported by the robot code. In this example the robot is not reporting it’s mode during the disabled and autonomous modes, but is reported during Teleop.

	Event markers will be displayed on the graph indicating the time the event occurred. Errors will display in red; warnings will display in yellow. Hovering over an event marker will display information about the event in the Messages box at the bottom left of the screen.

	Major events are shown as vertical lines across the graph display.

To zoom in on a portion of the graph, click and drag around the desired viewing
area. You can only zoom the time axis, you cannot zoom vertically.

Event List

[image: ../../../_images/eventlist.png]
The Event List tab displays a list of events (warnings and errors) recorded by the Driver Station. The events and detail displayed are determined by the currently active filter (images shows “All Events, All Info” filter active).

Filters

Three filters are currently available in the Log Viewer:

	Default: This filter filters out many of the errors and warnings produced by the Driver Station. This filter is useful for identifying errors thrown by the code on the Robot.

	All Events and Time: This filter shows all events and the time they occurred

	All Events, All Info: This filter shows all events and all recorded info. At this time the primary difference between this filter and “All Events and Time” is that this option shows the “unique” designator for the first occurrence of a particular message.

Identifying Logs from Matches

[image: ../../../_images/identifyinglogs.png]
A common task when working with the Driver Station Logs is to identify which logs came from competition matches. Logs which were taken during a match can now be identified using the FMS Connected event which will display the match type (Practice, Qualification or Elimination), match number, and the current time according to the FMS server. In this example, you can see that the FMS server time and the time of the Driver Station computer are fairly close, approximately 7 seconds apart.

Identifying Common Connection Failures with the Log Viewer

When diagnosing robot issues, there is no substitute for thorough knowledge of the system and a methodical debugging approach. If you need assistance diagnosing a connection problem at your events it is strongly recommended to seek assistance from your FTA and/or CSA. The goal of this section is to familiarize teams with how some common failures can manifest themselves in the DS Log files. Please note that depending on a variety of conditions a particular failure show slightly differently in a log file.

Note that all log files shown in this section have been scaled to match length using the Match Length button and then scrolling to the beginning of the autonomous mode. Also, many of the logs do not contain battery voltage information, the platform used for log capture was not properly wired for reporting the battery voltage.

“Normal” Log

[image: ../../../_images/normallog.png]
This is an example of a normal match log. The errors and warnings contained in the first box are from when the DS first started and can be ignored. This is confirmed by observing that these events occurred prior to the “FMS Connected:” event. The last event shown can also be ignored, it is also from the robot first connecting to the DS (it occurs 3 seconds after connecting to FMS) and occurs roughly 30 seconds before the match started.

Disconnected from FMS

[image: ../../../_images/disconnectedfromfms.png]
When the DS disconnects from FMS, and therefore the robot, during the match it may segment the log into pieces. The key indicators to this failure are the last event of the first log, indicating that the connection to FMS is now “bad” and the second event from the 2nd log which is a new FMS connected message followed by the DS immediately transitioning into Teleop Enabled. The most common cause of this type of failure is an ethernet cable with no latching tab or a damaged ethernet port on the DS computer.

roboRIO Reboot

[image: ../../../_images/roborioreboot.png]
The “Time since robot boot” message is the primary indicator in a connection failure caused by the roboRIO rebooting. In this log the DS loses connection with the roboRIO at 3:01:36 as indicated by the first event. The second event indicates that the ping initiated after the connection failed was successful to all devices other than the roboRIO. At 3:01:47 the roboRIO begins responding to pings again, one additional ping fails at 3:01:52. At 3:02:02 the Driver Station connects to the roboRIO and the roboRIO reports that it has been up for 3.682 seconds. This is a clear indicator that the roboRIO has rebooted. The code continues to load and at 3:02:24 the code reports an error communicating with the camera. A warning is also reported indicating that no robot code is running right before the code finishes starting up.

Ethernet cable issue on robot

[image: ../../../_images/ethernetcableissue.png]
An issue with the ethernet cable on the robot is primarily indicated by the ping to the roboRIO going to bad and Radio Lost and Radio Seen events when the roboRIO reconnects. The “Time since robot boot” message when the roboRIO reconnects will also indicate that the roboRIO has not rebooted. In this example, the robot Ethernet cable was disconnected at 3:31:38. The ping status indicates that the D-Link radio is still connected. When the robot reconnects at 3:32:08 the “Tim since robot boot” is 1809 seconds indicating that the roboRIO clearly did not reboot. At 3:32:12 the robot indicates that it lost the radio 24.505 seconds ago and it returned 0.000 seconds ago. These points are plotted as vertical lines on the graph, yellow for radio lost and green for radio seen. Note that the times are slightly offset from the actual events as shown via the disconnection and connection, but help to provide additional information about what is occurring.

Radio reboot

[image: ../../../_images/radioreboot.png]
A reboot of the robot radio is typically characterized by a loss of connection to the radio for ~40-45 seconds. In this example, the radio briefly lost power at 3:22:44, causing it to start rebooting. The event at 3:22:45 indicates that the ping to the radio failed. At 3:23:11, the DS regains communication with the roboRIO and the roboRIO indicates it has been up for 1272.775 seconds, ruling out a roboRIO reboot. Note that the network switch on the radio comes back up very quickly so a momentary power loss may not result in a “radio lost”/”radio seen” event pair. A longer disturbance may result in radio events being logged by the DS. In that case, the distinguishing factor which points towards a radio reboot is the ping status of the radio from the DS. If the radio resets, the radio will be unreachable. If the issue is a cabling or connection issue on the robot, the radio ping should remain “GOOD”.

 Networking Introduction

Networking Introduction

This section outlines basic robot configuration and usage relating to communication between the driver station and roboRIO.

	Networking Basics

	IP Configurations

	roboRIO Network Troubleshooting

	Windows Firewall Configuration

	Measuring Bandwidth Usage

	OM5P-AC Radio Modification

 Networking Basics

Networking Basics

What is an IP Address?

An IP address is a unique string of numbers, separated by periods that identifies each device on a network. Each IP address is divided up into 4 sections (octets) ranging from 0-255.

[image: ../../../_images/ip-address-parts.png]
As shown above, this means that each IP address is a 32-bit address meaning there are 232 addresses, or nearly 4,300,000,000 addresses possible. However, most of these are used publicly for things like web servers.

This brings up our first key point of IP Addressing: Each device on the network must have a unique IP address. No two devices can have the same IP address, otherwise collisions will occur.

Since there are only 4-billion addresses, and there are more than 4-billion computers connected to the internet, we need to be as efficient as possible with giving out IP addresses. This brings us to public vs. private addresses.

Public vs Private IP Addresses

To be efficient with using IP Addresses, the idea of “Reserved IP Ranges” was implemented. In short, this means that there are ranges of IP Addresses that will never be assigned to web servers, and will only be used for local networks, such as those in your house.

Key point #2: Unless you a directly connecting to your internet provider’s basic modem (no router function), your device will have an IP Address in one of these ranges. This means that at any local network, such as: your school, work office, home, etc., your device will 99% of the time have an IP address in a range listed below:

	Class

	Bits

	Start Address

	End Address

	Number of Addresses

	A

	24

	10.0.0.0

	10.255.255.255

	16,777,216

	B

	20

	172.16.0.0

	172.31.255.255

	1,048,576

	C

	16

	192.168.0.0

	192.168.255.255

	65,536

These reserved ranges let us assign one “unreserved IP Address” to an entire house, and then use multiple addresses in a reserved range to connect more than one computer to the internet. A process on the home’s internet router known as NAT (Network Address Translation), handles the process of keeping track which private IP is requesting data, using the public IP to request that data from the internet, and
then passing the returned data back to the private IP that requested it. This allows us to use the same reserved IP addresses for many local networks, without causing any conflicts. An image of this process is presented below.

[image: ../../../_images/nat-diagram.png]

Note

For the FRC networks, we will use the 10.0.0.0 range. This range allows us to use the 10.TE.AM.xx format for IP addresses, whereas using the Class B or C networks would only allow a subset of teams to follow the format. An example of this formatting would be 10.17.50.1 for FRC Team 1750.

How are these addresses assigned?

We’ve covered the basics of what IP addresses are, and which IP addresses we will use for the FRC competition,so now we need to discuss how these addresses will get assigned to the devices on our network. We already stated above that we can’t have two devices on the same network with the same IP Address, so we need a way to be sure that every device receives an address without overlapping. This can be done Dynamically (automatic), or Statically (manual).

Dynamically

Dynamically assigning IP addresses means that we are letting a device on the network manage the IP address assignments. This is done through the Dynamic Host Configuration Protocol (DHCP). DHCP has many components to it, but for the scope of this document, we will think of it as a service that automatically manages the network. Whenever you plug in a new device to the network, the DHCP service sees the new device, then provides it with an available IP address and the other network settings required for the device to communicate. This can mean that there are times we do not know the exact IP address of each device.

What is a DHCP server?

A DHCP server is a device that runs the DHCP service to monitor the network for new devices to configure. In larger businesses, this could be a dedicated computer running the DHCP service and that computer would be the DHCP server. For home networks, FRC networks, and other smaller networks, the DHCP service is usually running on the router; in this case, the router is the DHCP server.

This means that if you ever run into a situation where you need to have a DHCP server assigning IP addresses to your network devices, it’s as simple as finding the closest home router, and plugging it in.

Statically

Statically assigning IP addresses means that we are manually telling each device on the network which IP address we want it to have. This configuration happens through a setting on each device. By disabling DHCP on the network and assigning the addresses manually, we get the benefit of knowing the exact IP address of each device on the network, but because we set each one manually and there is no service keeping track of the used IP addresses, we have to keep track of this ourselves. While statically setting IP addresses, we must be careful not to assign duplicate addresses, and must be sure we are setting the other network settings (such as subnet mask and default gateway) correctly on each device.

What is link-local?

If a device does not have an IP address, then it cannot communicate on a network. This can become an issue if we have a device that is set to dynamically acquire its address from a DHCP server, but there is no DHCP server on the network. An example of this would be when you have a laptop directly connected to a roboRIO and both are set to dynamically acquire an IP address. Neither device is a DHCP server, and since they are the only two devices on the network, they will not be assigned IP addresses automatically.

Link-local addresses give us a standard set of addresses that we can “fall-back” to if a device set to acquire dynamically is not able to acquire an address. If this happens, the device will assign itself an IP address in the 169.254.xx.yy address range; this is a link-local address. In our roboRIO and computer example above, both devices will realize they haven’t been assigned an IP address and assign themselves a link-local address. Once they are both assigned addresses in the 169.254.xx.yy range, they will be in the same network and will be able to communicate, even though they were set to dynamic and a DHCP server did not assign addresses.

IP Addressing for FRC

See the IP Networking Article for more information.

Mixing Dynamic and Static Configurations

While on the field, the team should not notice any issues with having devices set statically in the 10.TE.AM.xx range, and having the field assign DHCP addresses as long as there are no IP address conflicts as referred to in the section above.

In the pits, a team may encounter issues with mixing Static and DHCP devices for the following reason. As mentioned above, DHCP devices will fall back to a link-local address (169.254.xx.yy) if a server isn’t present. For static devices, the IP address will always be the same. If the DHCP server is not present and the roboRIO, driver station, and laptop fall back to link-local addresses, the statically set devices in the 10.TE.AM.xx range will be in a different network and not visible to those with link-local addresses. A visual description of this is provided below:

[image: ../../../_images/mixing-static-dynamic.png]

mDNS

mDNS, or multicast Domain Name System is a protocol that allows us to benefit from the features of DNS, without having a DNS server on the network. To make this clearer, let’s take a step back and talk about what DNS is.

What is DNS?

DNS (Domain Name System) can become a complex topic, but for the scope of this paper, we are going to just look at the high level overview of DNS. In the most basic explanation, DNS is what allows us to relate human-friendly names for network devices to IP Addresses, and keep track of those IP addresses if they change.

Example 1: Let’s look at the site www.google.com. The IP address for this site is 172.217.164.132, however that is not very user friendly to remember!

Whenever a user types www.google.com into their computer, the computer contacts the DNS server (a setting provided by DHCP!) and asks what is the IP address on file for www.google.com. The DNSserver returns the IP address and then the computer is able to use that to connect to the Google web site.

Example 2: On your home network, you have a server named MYCOMPUTER that you want to connect to from your laptop. Your network uses DHCP so you don’t know the IP Address of MYCOMPUTER, but DNS allows you to connect just by using the MYCOMPUTER name. Additionally, whenever the DHCP assignments refresh, MYCOMPUTER may end up with a different address, but because you’re connecting by using the MYCOMPUTER name instead of a specific IP address, the DNS record was updated and you’re still able to connect.

This is the second benefit to DNS, and the most relevant for FRC. With DNS, if we reference devices by their friendly name instead of IP Address, we don’t have to change anything in our program if the IP Address changes. DNS will keep track of the changes and return the new address if it ever changes.

DNS for FRC

On the field and in the pits, there is no DNS server that allows us to perform the lookups like we do for the Google web site, but we’d still like to have the benefits of not remembering every IP Address, and not having to guess at every device’s address if DHCP assigns a different address than we expect. This is where mDNS comes into the picture.

mDNS provides us the same benefits as traditional DNS, but is just implemented in a way that does not require a server. Whenever a user asks to connect to a device using a friendly name, mDNS sends out a message asking the device with that name to identify itself. The device with the name then sends a return message including its IP address so all devices on the network can update their information. mDNS is what allows us to refer to our roboRIO as roboRIO-TEAM-FRC.local and have it connect on a DHCP network.

Note

If a device used for FRC does not support mDNS, then it will be assigned an IP Address in the 10.TE.AM.20 - 10.TE.AM.255 range, but we won’t know the exact address to connect and we won’t be able to use the friendly name like before. In this case, the device would need to have a static IP Address.

mDNS - Principles

Multicast Domain Name System (mDNS) is a system which allows for resolution of host names to IP addresses on small networks with no dedicated name server. To resolve a host name a device sends out a multicast message to the network querying for the device. The device then responds with a multicast message containing it’s IP. Devices on the network can store this information in a cache so subsequent requests for this address can be resolved from the cache without repeating the network query.

mDNS - Providers

To use mDNS, an mDNS implementation is required to be installed on your PC. Here are some common mDNS implementations for each major platform:

Windows:

	NI mDNS Responder: Installed with the NI FRC Game Tools

	Apple Bonjour: Installed with iTunes

OSX:

	Apple Bonjour: Installed by default

Linux:

	nss-mDNS/Avahi/Zeroconf: Installed and enabled by default on some Linux variants (such as Ubuntu or Mint). May need to be installed or enabled on others (such as Arch)

mDNS - Firewalls

Note

Depending on your PC configuration, no changes may be required, this section is provided to assist with troubleshooting.

To work properly mDNS must be allowed to pass through your firewall. Because the network traffic comes from the mDNS implementation and not directly from the Driver Station or IDE, allowing those applications through may not be sufficient. There are two main ways to resolve mDNS firewall issues:

	Add an application/service exception for the mDNS implementation (NI mDNS Responder is C:\Program Files\National Instruments\Shared\mDNS Responder\nimdnsResponder.exe)

	Add a port exception for traffic to/from UDP 5353. IP Ranges:

	10.0.0.0 - 10.255.255.255

	172.16.0.0 - 172.31.255.255

	192.168.0.0 - 192.168.255.255

	169.254.0.0 - 169.254.255.255

	224.0.0.251

mDNS - Browser support

Most web-browsers should be able to utilize the mDNS address to access the roboRIO web server as long as an mDNS provider is installed. These browsers include Microsoft Edge, Firefox, and Google Chrome.

USB

If using the USB interface, no network setup is required (you do need the Installing the FRC Game Tools installed to provide the roboRIO USB Driver). The roboRIO driver will automatically configure the IP address of the host (your computer) and roboRIO and the software listed above should be able to locate and utilize your roboRIO.

Ethernet/Wireless

The Programming your Radio will enable the DHCP server on the OpenMesh radio in the home use case (AP mode), if you are putting the OpenMesh in bridge mode and using a router, you can enable DHCP addressing on the router. The bridge is set to the same team based IP address as before (10.TE.AM.1) and will hand out DHCP address from 10.TE.AM.20 to 10.TE.AM.199. When connected to the field, FMS will also hand out addresses in the same IP range.

Summary

IP Addresses are what allow us to communicate with devices on a network. For FRC, these addresses are going to be in the 10.TE.AM.xx range if we are connected to a DHCP server or if they are assigned statically, or in the link-local 169.254.xx.yy range if the devices are set to DHCP, but there is no server present. For more information on how IP Addresses work, see this [https://support.microsoft.com/en-us/help/164015/understanding-tcp-ip-addressing-and-subnetting-basics] article by Microsoft.

If all devices on the network support mDNS, then all devices can be set to DHCP and referred to using their friendly names (ex. roboRIO-TEAM-FRC.local). If some devices do not support mDNS, they will need to be set to use static addresses.

If all devices are set to use DHCP or Static IP assignments (with correct static settings), the communication should work in both the pit and on the field without any changes needed. If there are a mix of some Static and some DHCP devices, then the Static devices will connect on the field, but will not connect in the pit. This can be resolved by either setting all devices to static settings, or leaving the current settings and providing a DHCP server in the pit.

 IP Configurations

IP Configurations

Note

This document describes the IP configuration used at events, both on the fields and in the pits, potential issues and workaround configurations.

TE.AM IP Notation

The notation TE.AM is used as part of IPs in numerous places in this document. This notation refers to splitting your four digit team number into two digit pairs for the IP address octets.

Example: 10.TE.AM.2

Team 12 - 10.0.12.2

Team 122 - 10.1.22.2

Team 1212 - 10.12.12.2

Team 3456 - 10.34.56.2

On the Field

This section describes networking when connected to the Field Network for match play

On the Field DHCP Configuration

The Field Network runs a DHCP server with pools for each team that will hand our addresses in the range of 10.TE.AM.20 and up with subnet masks

	OpenMesh OM5P-AN or OM5P-AC radio - Static 10.TE.AM.1 programmed by
Kiosk

	roboRIO - DHCP 10.TE.AM.2 assigned by the Robot Radio

	Driver Station - DHCP (“Obtain an IP address automatically”)
10.TE.AM.X assigned by field

	IP camera (if used) - DHCP 10.TE.AM.Y assigned by Robot Radio

	Other devices (if used) - DHCP 10.TE.AM.Z assigned by Robot Radio

On the Field Static Configuration

It is also possible to configure static IPs on your devices to accommodate devices or software which do not support mDNS. When doing so you want to make sure to avoid addresses that will be in use when the robot is on the field network. These addresses are 10.TE.AM.1 and 10.TE.AM.4 for the OpenMesh radio and the field access point and anything 10.TE.AM.20 and up which may be assigned to a device still configured for DHCP. The roboRIO network configuration can be set from the webdashboard.

	OpenMesh radio - Static 10.TE.AM.1 programmed by Kiosk

	roboRIO - Static 10.TE.AM.2 would be a reasonable choice, subnet mask
of 255.255.255.0 (default)

	Driver Station - Static 10.TE.AM.5 would be a reasonable choice,
subnet mask must be 255.0.0.0

	IP Camera (if used) - Static 10.TE.AM.11 would be a reasonable
choice, subnet 255.255.255.0 should be fine

	Other devices - Static 10.TE.AM.6-.10 or .12-.19 (.11 if camera not
present) subnet 255.255.255.0

In the Pits

Note

New for 2018: There is now a DHCP server running on the wired side of the Robot Radio in the event configuration.

In the Pits DHCP Configuration

	OpenMesh radio - Static 10.TE.AM.1 programmed by Kiosk.

	roboRIO - 10.TE.AM.2, assigned by Robot Radio

	Driver Station - DHCP (“Obtain an IP address automatically”),
10.TE.AM.X, assigned by Robot Radio

	IP camera (if used) - DHCP, 10.TE.AM.Y, assigned by Robot Radio

	Other devices (if used) - DHCP, 10.TE.AM.Z, assigned by Robot Radio

In the Pits Static Configuration

It is also possible to configure static IPs on your devices to accommodate devices or software which do not support mDNS. When doing so you want to make sure to avoid addresses that will be in use when the robot is on the field network. These addresses are 10.TE.AM.1 and 10.TE.AM.4 for the OpenMesh radio

 roboRIO Network Troubleshooting

roboRIO Network Troubleshooting

The roboRIO and the 2015 FRC tools use dynamic IP addresses (DHCP) for network connectivity. This article describes steps for troubleshooting networking connectivity between your PC and your roboRIO

Ping roboRIO

The first step to identifying roboRIO networking issues is to isolate if it is an application issue or a general network issue. To do this, click Start -> type cmd -> press Enter to open the command prompt. Type ping roboRIO-####-FRC.local where #### is your team number (with no leading zeroes) and press enter. If the ping succeeds, the issue is likely with the specific application, verify your team number configuration in the application, and check your firewall configuration.

USB Connection Troubleshooting

If you are attempting to troubleshoot the USB connection, try pinging the roboRIO’s IP address. As long as there is only one roboRIO connected to the PC, it should be configured as 172.22.11.2. If this ping fails, make sure you have the roboRIO connected and powered, and that you have installed the NI FRC Game Tools. The game tools installs the roboRIO drivers needed for the USB connection.

If this ping succeeds, but the .local ping fails, it is likely that either the roboRIO hostname is configured incorrectly, or you are connected to a DNS server which is attempting to resolve the .local address.

	Verify that your roboRIO has been imaged for your team number. This sets the hostname used by mDNS.

	Disconnect your computer from all other networks including Ethernet and WiFi. It is possible that one of these networks contains a DNS server that is attempting to resolve the .local address.

Ethernet Connection

[image: ../../../_images/roborio-ip-address.png]
If you are troubleshooting an Ethernet connection, it may be helpful to first make sure that you can connect to the roboRIO using the USB connection. Using the USB connection, open the roboRIO webdashboard and verify that the roboRIO has an IP address on the ethernet interface. If you are tethering to the roboRIO directly this should be a self-assigned 169.*.*.* address, if you are connected to the OM5P-AN radio, it should be an address of the form 10.TE.AM.XX where TEAM is your four digit FRC team number. If the only IP address here is the USB address, verify the physical roboRIO ethernet connection.

Ping the roboRIO IP address

If there is an IP address in the step above, try pinging this IP address using the command prompt as described above. If this works, you have an issue resolving the mDNS address on your PC. The two most common causes are not having an mDNS resolver installed on the system and a DNS server on the network that is trying to resolve the .local address using regular DNS.

	Verify that you have an mDNS resolver installed on your system. On Windows, this is typically fulfilled by the NI FRC Game Tools. For more information on mDNS resolvers, see the roboRIO Networking article.

	Disconnect your computer from any other networks and make sure you have the OM5P-AN configured as an access point, using the FRC Radio Configuration Utility. Removing any other routers from the system will help verify that there is not a DNS server causing the issue.

Ping fails

[image: ../../../_images/control-panel-dhcp.png]
If pinging the IP address directly fails, you may have an issue with the network configuration of the PC. The PC should be configured to Obtain an Address Automatically (also known as DHCP). To check this, click Start -> Control Panel -> Network Connections -> Change adapter settings, then right click on the appropriate interface (usually Local Area Connection for Ethernet or Wireless Network Connection for wireless) and select Properties. Click Internet Protocol Version 4, then click Properties. Make sure both radio buttons are set to Obtain automatically.

Other things to check

Other possibilities that may cause issues include:

	Proxies. Having a proxy enabled may cause issues with the roboRIO networking.

 Windows Firewall Configuration

Windows Firewall Configuration

Many of the programming tools used in FRC need network access for various reasons. Depending on the exact configuration, the Windows Firewall may potentially interfere with this access for one or more of these programs. This document describes procedures for Windows 7, but future versions should be similar.

Disabling Windows Firewall

The easiest solution is to disable the Windows Firewall. Teams should beware that this does make the PC potentially more vulnerable to malware attacks if connecting to the internet.

Control Panel

[image: ../../../_images/windows-firewall-configuration-1.png]
Click Start -> Control Panel to open the Control Panel. Click the dropdown next to View by: and select Small icons then click Windows Defender Firewall.

Turn Windows Firewall on or off

[image: ../../../_images/windows-firewall-configuration-2.png]
In the left pane, click Turn Windows Defender Firewall on or off, and click yes. Enter your Administrator password if a dialog appears.

Disable the Firewall

[image: ../../../_images/windows-firewall-configuration-3.png]
For each category, select the radio button to Turn off Windows Defender Firewall. Then click OK.

Configure the firewall

Alternatively, you can add exceptions to the Firewall for any FRC programs you are having issues with.

Open Control Panel

[image: ../../../_images/windows-firewall-configuration-1.png]
Click Start -> Control Panel to open the Control Panel. Click the dropdown next to View by: and select Small icons then click Windows Defender Firewall.

Allow a program…

[image: ../../../_images/windows-firewall-configuration-5.png]
In the left pane, click Allow a program or feature through Windows Defender Firewall

Allowed Programs

[image: ../../../_images/windows-firewall-configuration-6.png]
For each FRC program you are having an issue with, make sure that it appears in the list and that it has a check in each of the 3 columns. If you need to change a setting, you made need to click the Change settings button in the top right before changing the settings. If the program is not in the list at all, click the Allow another program... button and browse to the location of the program to add it.

 Measuring Bandwidth Usage

Measuring Bandwidth Usage

On the FRC Field (and at home when the radio is configured using the FRC Bridge Configuration Utility) each team is limited to 4Mb/s of network traffic (see the FMS Whitepaper [https://wpilib.screenstepslive.com/s/fms/m/whitepaper/l/608744-fms-whitepaper] for more details). The FMS Whitepaper provides information on determining the bandwidth usage of the Axis camera, but some teams may wish to measure their overall bandwidth consumption. This document details how to make that measurement.

Measuring Bandwidth Using the Performance Monitor (Win 7 only)

Windows 7 contains a built-in tool called the Performance Monitor that can be used to monitor the bandwidth usage over a network interface.

Launching the Performance Monitor

[image: ../../../_images/measuring-bandwidth-usage-1.png]
Click Start and in the search box, type perfmon.msc and press Enter.

Open Real-Time Monitor

[image: ../../../_images/measuring-bandwidth-usage-2.png]
In the left pane, click Performance Monitor to display the real-time monitor.

Add Network Counter

[image: ../../../_images/measuring-bandwidth-usage-3.png]

	Click the green plus near the top of the screen to add a counter

	In the top left pane, locate and click on Network Interface to select it

	In the bottom left pane, locate the desired network interface (or use All instances to monitor all interfaces)

	Click Add>> to add the counter to the right pane.

	Click OK to add the counters to the graph.

Remove Extra Counters

[image: ../../../_images/measuring-bandwidth-usage-4.png]
In the bottom pane, select each counter other than Bytes Total/sec and press the Delete key. The Bytes Total/sec entry should be the only entry remaining in the pane.

Configure Data Properties

[image: ../../../_images/measuring-bandwidth-usage-5.png]
Press Ctrl+Q to bring up the Properties window. Click on the dropdown next to Scale and select 1.0. Then click on the Graph tab.

Configure Graph Properties

[image: ../../../_images/measuring-bandwidth-usage-6.png]
In the Maximum Box under Vertical Scale enter 917504 (this is 7 Megabits converted to Bytes). If desired, turn on the horizontal grid by checking the box. Then click OK to close the dialog.

Viewing Bandwidth Usage

[image: ../../../_images/measuring-bandwidth-usage-7.png]
You may now connect to your robot as normal over the selected interface (if you haven’t done so already). The graph will show the total bandwidth usage of the connection, with the bandwidth cap at the top of the graph. The Last, Average, Min and Max values are also displayed at the bottom of the graph. Note that these values are in Bytes/Second meaning the cap is 917,504. With just the Driver Station open you should see a flat line at ~100000 Bytes/Second.

Measuring Bandwidth Usage using Wireshark

If you are not using Windows 7, you will need to install a 3rd party program to monitor bandwidth usage. One program that can be used for this purpose is Wireshark. Download and install the latest version of Wireshark for your version of Windows. After installation is complete, locate and open Wireshark. Connect your computer to your robot, open the Driver Station and any Dashboard or custom programs you may be using.

Select the interface and Start capture

[image: ../../../_images/measuring-bandwidth-usage-8.png]
In the Wireshark program on the left side, select the interface you are using to connect to the robot and click Start.

Open Statistics Summary

[image: ../../../_images/measuring-bandwidth-usage-9.png]
Let the capture run for at least 1 minute, then click Statistics then Summary.

View Bandwidth Usage

[image: ../../../_images/measuring-bandwidth-usage-10.png]
Average bandwidth usage, in Megabits/Second is displayed near the bottom of the summary window.

 OM5P-AC Radio Modification

OM5P-AC Radio Modification

The intended use case for the OM5P-AC radio does not subject it to the same shocks and forces as it sees in the FRC environment. If the radio is subjected to significant pressure on the bottom of the case, it is possible to cause a radio reboot by shorting a metal shield at the bottom of the radio to some exposed metal leads on the bottom of the board. This article details a modification to the radio to prevent this scenario.

Warning

It takes significant pressure applied to the bottom of the case to cause a reboot in this manner. Most FRC radio reboot issues can be traced to the power path in some form. We recommend mitigating this risk via strategic mounting of the radio rather than opening and modifying the radio (and risk damaging delicate internal components):

	Avoid using the “mounting tab” features on the bottom of the radio)

	You may wish to mount the radio to allow for some shock absorption. A little can go a long way, mounting the radio using hook and loop fastener or to a robot surface with a small amount of flex (plastic or sheet metal sheet, etc.) can significantly reduce the forces experienced by the radio.

Opening the Radio

Note

The OpenMesh OM5P-AC is not designed to be a user serviceable device. Users perform this modification at their own risk. Make sure to work slowly and carefully to avoid damaging internal components such as radio antenna cables.

Case Screws

[image: ../../../_images/om5p-ac-radio-modification-1.png]
[image: ../../../_images/om5p-ac-radio-modification-2.png]
Locate the two rubber feet on the front side of the radio then pry them off the radio using fingernails, small flat screwdriver, etc. Using a small Phillips screwdriver, remove the two screws under the feet.

Side Latches

[image: ../../../_images/om5p-ac-radio-modification-3.png]
There is a small latch on the lid of the radio near the middle of each long edge (you can see these latches more clearly in the next picture). Using a fingernail or very thin tool, slide along the gap between the lid and case from front to back towards the middle of the radio, you should hear a small pop as you near the middle of radio. Repeat on the other side (note: it’s not hard to accidentally re-latch the first side while doing this, make sure both sides are unlatched before proceeding). The radio lid should now be slightly open on the front side as shown in the image above.

Remove Lid

Warning

The board may stick to the lid as you remove it due to the heatsink pads. Look through the vents of the radio as you remove the lid to see if the board is coming with it, if it is you may need to insert a small tool to hold the board down to separate it from the lid. We recommend a small screwdriver or similar tool that fits through the vents, applied through the front corner on the barrel jack side, right above the screw hole. You can scroll down to the picture with the lid removed to see what the board looks like in this area.

[image: ../../../_images/om5p-ac-radio-modification-4.png]
To begin removing the lid, slide it forward (lifting slightly) until the screw holders hit the case front (you may need to apply pressure on the latch areas while doing this.

[image: ../../../_images/om5p-ac-radio-modification-5.png]
Next, begin rotating the lid slightly away from the barrel jack side, as shown while continuing to lift. This will unhook the lid from the small triangle visible in the top right corner. Continue to rotate slightly in this direction while pushing the top left corner towards the barrel jack (don’t try to lift further in this step) to unhook a similar feature in the top left corner. Then lift the lid completely away from the body.

Remove Board

[image: ../../../_images/om5p-ac-radio-modification-6.png]

Warning

Note the antenna wires shown in the image above. These wires, and their connectors, are fragile, take care not to damage them while performing the next steps.

[image: ../../../_images/om5p-ac-radio-modification-7.png]
[image: ../../../_images/om5p-ac-radio-modification-8.png]
To remove the board, we recommend grasping one or both network ports with your fingers (as shown) and pushing inward (toward the front of the radio) and upward until the network ports and barrel jack are free from the case.

[image: ../../../_images/om5p-ac-radio-modification-9.png]
Tilt the board up (towards the short grey antenna cable) to expose the metal shield underneath.

Note

When you perform this step, you may notice that there is a small reset button on the underside of the board that is larger than the hole in the case. Note that pressing the reset button with the FRC firmware installed has no effect and that drilling the case of the radio is not a permitted modification.

Apply Tape

[image: ../../../_images/om5p-ac-radio-modification-10.png]
Apply a piece of electrical tape to the metal shield in the area just inside of the network port/barrel jack openings. This will prevent the exposed leads on the underside of the board from short circuiting on this plate.

Re-assemble Radio

Re-assemble the radio by reversing the instructions to open it:

	Lay the board back down, making sure it aligns with the screw holes near the front and seats securely

	Slide the lid onto the back left retaining feature by moving it in from right to left. Take care of the capacitor in this area

	Rotate the lid, press downwards and slide the back right retaining feature in

	Press down firmly on the front/middle of the lid to seat the latches

	Replace 2 screws in front feet

	Replace front feet

 Index

Index

 The Requested Page Was Not Found

The Requested Page Was Not Found

The page you were searching for does not exist. If you feel like this may be an issue, open a request at the frc-docs repository [https://github.com/wpilibsuite/frc-docs/issues].

[image: https://xkcd.com/689/]
Image credit to XKCD [https://xkcd.com/689/].

 Hardware - Basics

Hardware - Basics

	Visão geral do Hardware do Sistema de Controle de FRC®

	Wiring Best Practices

	Wiring Pneumatics

	Status Light Quick Reference

	Robot Preemptive Troubleshooting

 Robot Preemptive Troubleshooting

Robot Preemptive Troubleshooting

Note

In FIRST® Robotics Competition, robots take a lot of stress while driving around the field. It is important to make sure that connections are tight, parts are bolted securely in place and that everything is mounted so that a robot bouncing around the field does not break.

Check battery connections

[image: ../../../_images/preCheckBatt.png]
The tape the should be covering the battery connection in these examples has been removed to illustrate what is going on. On your robots, the connections should be covered.

Wiggle battery harness connector. Often these are loose because the screws loosen, or sometimes the crimp is not completely closed. You will only catch the really bad ones though because often the electrical tape stiffens the connection to a point where it feels stiff. Using a voltmeter or Battery Beak will help with this.

Apply considerable force onto the battery cable at 90 degrees to try to move the direction of the cable leaving the battery, if successful the connection was not tight enough to begin with and it should be redone.

Secure the battery to robot connection

[image: ../../../_images/preCheckConnecc.png]
In almost every event we see at least one robot where a not properly secured battery connector (the large Anderson) comes apart and disconnects power from the robot. This has happened in championship matches on the Einstein and everywhere else. Its an easy to ensure that this doesn’t happen to you by securing the two connectors by wrapping a tie wrap around the connection. 10 or 12 tie wraps for the piece of mind during an event is not a high price to pay to guarantee that you will not have the problem of this robot from an actual event after a bumpy ride over a defense.

120 Amp circuit breaker

[image: ../../../_images/preCheckBreaker.png]
Apply a twisting force onto the cable to rotate the harness. If you are successful then the screw is not tight enough. Split washers might help here, but in the mean time, these require checking every few matches.

Because the metal is just molded into the case, every once in awhile you will break off the bolt, ask any veteran team and they’ll tell you they go through a number of these every few seasons. After tightening the nut, retest by once again trying to twist the cable.

Power Distribution Panel (PDP)

[image: ../../../_images/preCheckPDP.png]
Make sure that split washers were placed under the PDP screws, but it is not easy to visually confirm, and sometimes you can’t. You can check by removing the case. Also if you squeeze the red and black wires together, sometimes you can catch the really lose connections.

Tug test everything

[image: ../../../_images/preCheckTug.png]
The Weidmuller contacts for power, compressor output, roboRIO power connector, and radio power are important to verify by tugging on the connections as shown. Make sure that none of the connections pull out.

Look for possible or impending shorts with Weidmuller connections that are close to each other, and have too-long wire-lead lengths (wires that are stripped extra long).

Spade connectors can also fail due to improper crimps, so tug-test those as well.

Blade fuses

[image: ../../../_images/preCheckFuse.png]
If you can remove the blade fuses by hand then they are not in completely. Make sure that they are completely seated in the PDP so that they don’t pop out during robot operation.

roboRIO swarf

Swarf is: fine chips or filings of stone, metal, or other material produced by a machining operation. Often modifications must be made to a robot while the control system parts are in place. The circuit board for the roboRIO is conformally coated, but that doesn’t absolutely guarantee that metal chips won’t short out traces or components inside the case. In this case, you must exercise care in making sure that none of the chips end up in the roboRIO or any of the other components. In particular, the exposed 3 pin headers are a place where chips can enter the case. A quick sweep through each of the four sides with a flashlight is usually sufficient to find the really bad areas of infiltration.

Radio barrel jack

Make sure the correct barrel jack is used, not one that is too small and falls out for no reason. This isn’t common, but ask an FTA and every once in awhile a team will use some random barrel jack that is not sized correctly, and it falls out in a match on first contact.

Ethernet cable

If the RIO to radio ethernet cable is missing the clip that locks the connector in, get another cable. This is a common problem that will happen several times in every competition. Make sure that your cables are secure. The clip often breaks off, especially when pulling it through a tight path, it snags on something then breaks.

Cable slack

Cables must be tightened down, particularly the radio power and ethernet cable. The radio power cables don’t have a lot of friction force and will fall out (even if it is the correct barrel) if the weight of the cable-slack is allowed to swing freely.

Ethernet cable is also pretty heavy, if it’s allowed to swing freely, the plastic clip may not be enough to hold the ethernet pin connectors in circuit.

Reproducing problems in the pit

Beyond the normal shaking and rattling of all cables while the robot is power and tethered, you might try picking up one side of the robot off the ground and drop it, and see if you lose connection. The driving on the field, especially when trying to breach defenses will often be very violent. It’s better to see it fail in the pit rather than in a critical match.

When doing this test it’s important to be ethernet tethered and not USB tethered, otherwise you are not testing all of the critical paths.
Check firmware and versions

Robot inspectors do this, but you should do it as well, it helps robot inspectors out and they appreciate it. And it guarantees that you are running with the most recent, bug fixed code. You wouldn’t want to lose a match because of an out of date piece of control system software on your robot.

Driver station checks

We often see problems with the Drivers Station. You should:

	ALWAYS bring the laptop power cable to the field, it doesn’t matter how good the battery is, you are allowed to plug in at the field.

	Check the power and sleep settings, turn off sleep and hibernate, screen savers, etc.

	Turn off power management for USB devices (dev manager)

	Turn off power management for ethernet ports (dev manager)

	Turn off windows defender

	Turn off firewall

	Close all apps except for DS/Dashboard when out on the field.

	Verify that there is nothing unnecessary running in the application tray in the start menu (bottom right side)

Handy tools

[image: ../../../_images/preCheckTools.png]
There never seems to be enough light inside robots, at least not enough to scrutinize the critical connection points, so consider using a handheld LED flashlight to inspect the connections on your robot. They’re available from home depot or any hardware/automotive store.

A WAGO tool is nice tool for redoing Weidmuller connections with stranded wires. Often I’ll do one to show the team, and then have them do the rest using the WAGO tool to press down the white-plunger while they insert the stranded wire. The angle of the WAGO tool makes this particularly helpful.

 Status Light Quick Reference

Status Light Quick Reference

Many of the components of the FRC Control System have indicator lights that can be used to quickly diagnose problems with your robot. This guide shows each of the hardware components and describes the meaning of the indicators. Photos and information from Innovation FIRST and Cross the Road Electronics.

Robot Signal Light (RSL)

[image: ../../../_images/rslLight.png]

	Solid ON - Robot On and Disabled

	Blinking - Robot On and Enabled

	Off - Robot Off, roboRIO not powered or RSL not wired properly.

roboRIO

[image: ../../../_images/rioLight.png]

roboRIO Power

	Green - Power is good

	Amber - Brownout protection tripped, outputs disabled

	Red - Power fault, check user rails for short circuit

roboRIO Status

	On while the controller is booting, then should turn off

	2 blinks - Software error, reimage roboRIO

	3 blinks - Safe Mode, restart roboRIO, reimage if not resolved

	4 blinks - Software crashed twice without rebooting, reboot roboRIO, reimage if not resolved

	Constant flash or stays solid on - Unrecoverable error

roboRIO Radio

	Not currently implemented

roboRIO Comm

	Off - No Communication

	Red Solid - Communication with DS, but no user code

	Red Blinking - E-stop

	Green Solid - Good communication with DS

roboRIO Mode

	Off - Outputs disabled (robot in Disabled, brown-out, etc.)

	Amber/Orange - Autonomous Enabled

	Green - Teleop Enabled

	Red - Test Enabled

roboRIO RSL

	See above

OpenMesh Radio

[image: ../../../_images/radioLight.png]

Radio Power

	Blue - On or Powering Up

	Blue Blinking - Powering Up

Radio Eth Link

	Blue - Link Up

	Blue Blinking - Link Up + Traffic Present

Radio WiFi

	Off - Bridge Mode Unlinked or Non-FRC Firmware

	Red - AP Mode Unlinked

	Yellow/Orange - AP Mode Linked

	Green - Bridge Mode Linked

Power Distribution Panel

[image: ../../../_images/pdpLight.png]

Voltage Regulator Module

[image: ../../../_images/vrmLight.png]
The status LEDs on the VRM indicate the state of the two power supplies. If the supply is functioning properly the LED should be lit bright green. If the LED is not lit or is dim, the output may be shorted or drawing too much current.

Pneumatics Control Module (PCM)

[image: ../../../_images/pcmLight.png]
Solenoid Channel LEDs - These LEDs are lit red if the Solenoid channel is enabled and not lit if it is disabled.

PCM Comp

This is the Compressor LED. This LED is green when the compressor output is active (compressor is currently on) and off when the compressor output is not active.

PCM Status

The status LED indicates device status as indicated by the two tables above. For more information on resolving PCM faults see the PCM User Manual. Note that the No CAN Comm fault will not occur only if the device cannot see communicate with any other device, if the PCM and PDP can communicate with each other, but not the roboRIO you will NOT see a No Can Comm fault.

Digilent DMC-60

[image: ../../../_images/digilentLight.png]
When the center LED is off the device is operating in coast mode. When the center LED is illuminated the device is operating in brake mode. The Brake/Coast mode can be toggled by pressing down on the center of the triangle and then releasing the button.

Jaguar speed controllers

[image: ../../../_images/jagLight.png]

Mindsensors SD 540

[image: ../../../_images/sd540Light.png]

REV Robotics Servo Power Module

[image: ../../../_images/servoLight.png]

	6V Power LED off, dim or flickering with power applied = Over-current shutdown

REV Robotics SPARK

[image: ../../../_images/sparkLight.png]

Talon speed controllers

[image: ../../../_images/ogTalonLight.png]
The LED is used to indicate the direction and percentage of throttle and state of calibration. The LED may be one of three colors; red, orange or green. A solid green LED indicates positive output voltage equal to the input voltage of the Talon. A solid Red LED indicates an output voltage that is equal to the input voltage multiplied by -1(input voltage = 12 volts, output equals -12 volts). The LED will blink it’s corresponding color for any throttle less than 100% (red indicates negative polarity, green indicates positive). The rate at which the led blinks is proportional to the percent throttle. The faster the LED blinks the closer the output is to 100% in either polarity.

The LED will blink orange any time the Talon is in the disabled state. This will happen if the PWM input signal is lost, or in FRC, when the robot is disabled. If the Talon is in the enabled state and the throttle is within the 4% dead band, the LED will remain solid orange.

Flashing Red/Green indicate ready for calibration. Several green flashes indicates successful calibration, and red several times indicates unsuccessful calibration.

Victor speed controllers

LED Indicator Status:

	Green - full forward

	Orange - neutral / brake

	Red - full reverse

	Flashing orange - no PWM signal

	Flashing red/green - calibration mode

	Flashing green - successful calibration

	Flashing red - unsuccessful calibration

Victor-SP speed controllers

[image: ../../../_images/victorSPLight.png]
Brake/Coast/Cal Button/LED - Red if the controller is in brake mode, off if the controller is in coast mode

Status

The Status LEDs are used to indicate the direction and percentage of throttle and state of calibration. The LEDs may be one of three colors; red, orange or green. Solid green LEDs indicate positive output voltage equal to the input voltage of the Victor-SP. Solid Red LEDs indicate an output voltage that is equal to the input voltage multiplied by -1(input voltage = 12 volts, output equals -12 volts). The LEDs will blink in the corresponding color for any throttle less than 100% (red indicates negative polarity, green indicates positive). The rate at which the LEDs blink is proportional to the percent throttle. The faster the LEDs blink the closer the output is to 100% in either polarity.

The LEDs will blink orange any time the Victor-SP is in the disabled state. This will happen if the PWM input signal is lost, or in FRC, when the robot is disabled. If the Victor-SP is in the enabled state and the throttle is within the 4% dead band, the LED will remain solid orange.

Flashing Red/Green indicate ready for calibration. Several green flashes indicates successful calibration, and red several times indicates unsuccessful calibration.

Talon-SRX speed controllers

[image: ../../../_images/talonSRXLight.png]

Spike relay configured as a motor, light, or solenoid switch

[image: ../../../_images/spikeRelay1Light.png]

Spike relay configured as for one or two solenoids

[image: ../../../_images/spikeRelay2Light.png]

 Wiring Best Practices

Wiring Best Practices

Hint

The article Wiring the FRC Control System walks through the details of what connects where to wire up the FRC Control System, this article provides some additional “Best Practices” that may increase reliability and make maintenance easier.

Vibration/Shock

An FRC Robot is an incredibly rough environment when it comes to vibrations and shock loads. While many of the FRC specific electronics are extensively tested for mechanical robustness in these conditions, a few components, such as the radio, are not specifically designed for use on a mobile platform. Taking steps to reduce the shock and vibration these components are exposed to may help reduce failures. Some suggestions that may reduce mechanical failures:

	Vibration Isolation -
Make sure to isolate any components which create excessive vibration, such as compressors, using “vibration isolators”. This
will help reduce vibration on the robot which can loosen fasteners and cause premature fatigue failure on some electronic
components.

	Bumpers - Use Bumpers to cover as much of the robot as possible for your design. While the rules require specific bumper coverage around the corners of your robot, maximizing the use of bumpers increases the likelihood that all collisions will be damped by your bumpers. Bumpers significantly reduce the g-forces experienced in a collision compared to hitting directly on a hard robot surface, reducing the shock experienced by the electronics and decreasing the chance of a shock related failure.

	Shock Mounting - You may choose to shock mount some or all of your electronic components to further reduce the forces they see in robot collisions. This is especially helpful for the robot radio and other electronics such as co-processors, which may not be designed for use on mobile platforms. Vibration isolators, springs, foams, or mounting to flexible materials all may reduce the shock forces seen by these components.

Redundancy

Unfortunately there are few places in the FRC Control System where redundancy is feasible. Taking advantage of opportunities for redundancy can increase reliability. The primary example of this is wiring the barrel connector to the radio in addition to the provided PoE connection. This ensures that if one of the cables becomes damaged or dislodged, the other will maintain power to the radio. Keep an eye out for other potential areas to provide redundancy when wiring and programming your robot.

Port Savers

For any connections on the Robot or Driver station that may be frequently plugged and unplugged (such as DS joysticks, DS Ethernet, roboRIO USB tether, and Ethernet tether) using a “Port Saver” or “pigtail” can substantially reduce the potential for damaging the port. This type of device can serve double duty, both reducing the number of cycles that the port on the electronic device sees, as well as relocating the connection to a more convenient location. Make sure to secure the port saver (see the next item) to avoid port damage.

Wire Management and Strain Relief

One of the most critical components to robot reliability and maintenance is good wire management and strain relief. Good wire management is comprised of a few components:

	Make sure cables are the correct length. Any excess wire length is just more to manage. If you must have extra wire due to additional length on COTS cabling, secure the extra into a small bundle using separate cable ties before securing the rest of the wire.

	Ensure that cables are secured close to connection points, with enough slack to avoid putting strain on connectors. This is called strain relief, and is critical to minimizing the likelihood that a cable comes unplugged or a wire breaks off at a connection point (these are generally stress concentrators).

	Secure cables near any moving components. Make sure that all wire runs are secure and protected from moving components, even if the moving components were to bend or over-travel.

	Secure cables at additional points as necessary to keep wiring neat and clean. Take care to not over secure wires; if wires are secured in too many locations, it may actually make troubleshooting and maintenance more difficult.

Documentation

A great way to make maintenance easier is to create documentation describing what is connected where on the robot. There are a number of ways of creating this type of documentation which range from complete wiring diagrams to excel charts to a quick list of what functions are attached to which channels. Many teams also integrate these lists with labeling (see the next bullet).

When a wire is accidentally cut, or a mechanism is malfunctioning, or a component burns out, it will be much easier to repair if you have some documentation to tell you what is connected where without having to trace the wiring all the way through (even if your wiring is neat!)

Labeling

Labeling is a great way to supplement the wiring documentation described above. There are many different strategies to labeling wiring and electronics, all with their own pros and cons. Labels for electronics and flags for wires can be made by hand, or using a label maker (some can also do heat-shrink labels), or you can use different colors of electrical tape or labeling flags to indicate different things. Whatever system you choose, make sure you understand how it complements your documentation and make sure everyone on your team is familiar with it.

Check all wiring and connections

After all wiring on the robot is complete, make sure to check each connection, pulling on each, to ensure that everything is secure. Additionally, ensure that no stray wire “whiskers” are sticking out of any connection point and that no uninsulated connections are exposed. If any connections come loose while testing, or any “whiskers” are discovered, re-make the connection and make sure to have a second person check it when complete.

A common source of poor connections is screw-type or nut-and-bolt fasteners. For any connections of this type on the robot (e.g. battery connections, main breaker, PDP, roboRIO), make sure the fasteners are tight. For nut-and-bolt style connections, ensure that the wire/terminal cannot be rotate by hand; if you can rotate your battery wire or main breaker connection by grasping the terminal and twisting, the connection is not tight enough.

Another common source of failures is the fuses at the end of the PDP. Ensure these fuses are completely seated; you may need to apply more force than you expect to seat them completely. If the fuses are seated properly they will likely be difficult or impossible to remove by hand.

Snap-in connections such as the SB-50 connector should be secured using clips or cable ties to ensure they do not pop loose during impacts.

Re-Check Early and Often

Re-check the entire electrical system as thoroughly as possible after playing the first match or two (or doing very vigorous testing). The first few impacts the robot sees may loosen fasteners or expose issues.

Create a checklist for re-checking electrical connections on a regular basis. As a very rough starting point, rotational fasteners such as battery and PDP connections should be checked every 1-3 matches. Spring type connections such as the WAGO and Weidmuller connectors likely only need to be checked once per event. Ensure that the team knows who is responsible for completing the checklist and how they will document that it has been done.

Battery Maintenance

Take good care of your batteries! A bad battery can easily cause a robot to
functional poorly, or not at all, during a match. Label all of your batteries
to help keep track of usage during the event. Many teams also include
information such as the age of the battery on this label.

	
	Never lift or carry batteries by the wires! Carrying batteries by the wires
	has the potential to damage the internal connection between the terminals and
the plates, dramatically increasing internal resistance and degrading performance.

	
	Mark any dropped battery bad until a complete test can be conducted. In
	addition to the mentioned terminal connections, dropping a battery also has
the potential to damage individual cells. This damage may not register on a simple
voltage test, instead hiding until the battery is placed under load.

	
	Rotate batteries evenly. This helps ensure that batteries have the most time to
	charge and rest and that they wear evenly (equal number of charge/discharge cycles)

	
	Load test batteries if possible to monitor health. There are a number of
	commercially available products teams use to load test batteries, including at
least one designed specifically for FRC. A load test can provide an indicator of
battery health by measuring internal resistance. This measurement is much more
meaningful when it comes to match performance than a simple no-load voltage number
provided by a multimeter.

Check DS Logs

After each match, review the DS logs to see what the battery voltage and current usage looks like. Once you have established what the normal range of these items is for your robot, you may be able to spot potential issues (bad batteries, failing motors, mechanical binding) before they become critical failures.

 Wiring Pneumatics

Wiring Pneumatics

Hint

For pneumatics safety & mechanical requirements, consult this year’s Robot Construction rules. For mechanical design guidelines, the FIRST Pneumatics Manual is located here (last updated 2017) [https://firstfrc.blob.core.windows.net/frc2017/pneumatics-manual.pdf]

Wiring Overview

A single PCM will support most pneumatics applications, providing an output for the compressor, input for the pressure switch, and outputs for up to 8 solenoid channels (12V or 24V selectable). The module is connected to the roboRIO over the CAN bus and powered via 12V from the PDP.

For complicated robot designs requiring more channels or multiple solenoid voltages, additional PCMs can be added to the control system.

PCM Power and Control Wiring

The first PCM on your robot can be wired from the PDP VRM/PCM connectors on the end of the PDP. The PCM is connected to the roboRIO via CAN and can be placed anywhere in the middle of the CAN chain (or on the end with a custom terminator). For more details on wiring a single PCM, see docs/getting-started/getting-started-frc-control-system/how-to-wire-a-robot:Pneumatics Control Module Power (Optional)

Additional PCMs can be wired to a standard WAGO connector on the side of the PDP and protected with a 20A or smaller circuit breaker. Additional PCMs should also be placed anywhere in the middle of the CAN chain.

The Compressor

The compressor can be wired directly to the Compressor Out connectors on the PCM. If additional length is required, make sure to use 18 AWG wire or larger for the extension.

The Pressure Switch

The pressure switch should be connected directly to the pressure switch input terminals on the PCM. There is no polarity on the input terminals or on the pressure switch itself, either terminal on the PCM can be connected to either terminal on the switch. Ring or spade terminals are recommended for the connection to the switch screws (note that the screws are slightly larger than #6, but can be threaded through a ring terminal with a hole for a #6 screw such as the terminals shown in the image).

Solenoids

Each solenoid channel should be wired directly to a numbered pair of terminals on the PCM. A single acting solenoid will use one numbered terminal pair. A double acting solenoid will use two pairs. If your solenoid does not come with color coded wiring, check the datasheet to make sure to wire with the proper polarity.

Solenoid Voltage Jumper

[image: ../../../_images/pcm01.jpg]
The PCM is capable of powering either 12V or 24V solenoids, but all solenoids connected to a single PCM must be the same voltage. The PCM ships with the jumper in the 12V position as shown in the image. To use 24V solenoids move the jumper from the left two pins (as shown in the image) to the right two pins. The overlay on the PCM also indicates which position corresponds to which voltage. You may need to use a tool such as a small screwdriver, small pair of pliers, or a pair of tweezers to remove the jumper.

 Accelerometers - Hardware

Accelerometers - Hardware

Accelerometers are common sensors used to measure acceleration.

In principle, precise measurements of acceleration can be double-integrated and used to track position (similarly to how the measurement of turn rate from a gyroscope can be integrated to determine heading) - however, in practice, accelerometers that are available within the legal FRC price range are not nearly accurate for this use. However, accelerometers are still useful for a number of tasks in FRC.

The roboRIO comes with a built-in three-axis accelerometer that all teams can use, however teams seeking more-precise measurements may purchase and use a peripheral accelerometer, as well.

Several popular FRC devices (known as “inertial measurement units,” or “IMUs”) combine both an accelerometer and a gyroscope. Popular FRC example include:

	Analog Devices ADIS16448 and ADIS 16470 IMUs [https://www.analog.com/en/landing-pages/001/first.html]

	CTRE Pigeon IMU [https://www.ctr-electronics.com/gadgeteer-imu-module-pigeon.html]

	Kauai Labs NavX [https://pdocs.kauailabs.com/navx-mxp/]

Types of accelerometers

There are two types of accelerometers commonly-used in FRC: single-axis accelerometers, and multi-axis accelerometers.

Single-axis accelerometers

As per their name, single-axis accelerometers measure acceleration along a single axis. This axis is generally specified on the physical device, and mounting the device in the proper orientation so that the desired axis is measured is highly important. Single-axis accelerometers generally output an analog voltage corresponding to the measured acceleration, and so connect to the roboRIO’s analog input ports.

Multi-axis accelerometers

Multi-axis accelerometers measure acceleration along all multiple spacial axes. The roboRIO’s built-in accelerometer is a three-axis accelerometer.

Peripheral multi-axis accelerometers may simply output multiple analog voltages (and thus connect to the analog input ports, or (more commonly) they may communicate with one of the roboRIO’s serial buses.

 Analog Inputs - Hardware

Analog Inputs - Hardware

Note

This section covers analog input hardware. For a software guide to analog inputs, see docs/software/sensors/analog-inputs-software:Analog Inputs - Software.

An analog signal [https://en.wikipedia.org/wiki/Analog_signal] is a signal whose value can lie anywhere in a continuous interval. This lies in stark contrast to a digital signal, which can take only one of several discrete values. The roboRIO’s analog input ports allow the measurement of analog signals with values from 0V to 5V.

In practice, there is no way to measure a “true” analog signal with a digital device such as a computer (like the roboRIO). Accordingly, the analog inputs are actually measured as a 12-bit digital signal - however, this is quite a high resolution 1.

Analog inputs are typically (but not always!) used for sensors whose measurements vary continuously over a range, such as ultrasonic rangefinders and potentiometers, as they can communicate by outputting a voltage proportional to their measurements.

Connecting to roboRIO analog input ports

Note

An additional four analog inputs are available via the “MXP” expansion port. To use these, a breakout board of some sort that connects to the MXP is needed.

Warning

Always consult the technical specifications of the sensor you are using before wiring the sensor, to ensure that the correct wire is being connected to each pin. Failure to do so can result in damage to the sensor or the RIO.

Warning

Never directly connect the power pin to the ground pin on any port on the roboRIO! This will trigger protection features on the roboRIO and may result in unexpected behavior.

[image: roboRIO Analog Inputs]

The roboRIO has 4 built-in analog input ports (numbered 0-3), as seen in the image above. Each port has three pins - signal (“S”), power (“V”), and ground (“⏚”). The “power” and “ground” pins are used to power the peripheral sensors that connect to the analog input ports - there is a constant 5V potential difference between the “power” and the “ground” pins 2. The signal pin is the pin on which the signal is actually measured.

Connecting a sensor to a single analog input port

Note

Some simple sensors (such as potentiometers) may have interchangeable power and ground connections.

Most sensors that connect to analog input ports will have three wires - signal, power, and ground - corresponding precisely to the three pins of the analog input ports. They should be connected accordingly.

Connecting a sensor to multiple analog input ports

Some sensors may need to connect to multiple analog input ports in order to function. In general, these sensors will only ever require a single power and a single ground pin - only the signal pin of the additional port(s) will be needed.

Footnotes

	1

	A 12-bit resolution yields [image: 2^{12}], or 4096 different values. For a 5V range, that’s an effective resolution of approximately 1.2 mV, or .0012V. The actual accuracy specification is plus-or-minus 50mV, so the discretization is not the limiting factor in the measurement accuracy.

	2

	All power pins are actually connected to a single rail, as are all ground pins - there is no need to use the power/ground pins corresponding to a given signal pin.

 Analog Potentiometers - Hardware

Analog Potentiometers - Hardware

Note

This section covers analog potentiometer hardware. For a software guide to analog potentiometers, see docs/software/sensors/analog-potentiometers-software:Analog Potentiometers - Software.

Warning

Potentiometers generally have a mechanically-limited travel range. Users should be careful that their mechanisms do not turn their potentiometers past their maximum travel, as this will damage or destroy the potentiometer.

Apart from quadrature encoders, another common way of measuring rotation on FRC robots is with analog potentiometers. A potentiometer is simply a variable resistor - as the shaft of the potentiometer turns, the resistance changes (usually linearly). Placing this resistor in a voltage divider [https://en.wikipedia.org/wiki/Voltage_divider] allows the user to easily measure the resistance by measuring the voltage across the potentiometer, which can then be used to calculate the rotational position of the shaft.

Wiring an analog potentiometer

As suggested by the names, analog potentiometers connect to the roboRIO’s analog input ports. To understand how exactly to wire potentiometers, however, it is important to understand their internal circuitry.

[image: Potentiometer] [image: Voltage Divider]

The picture above on the left shows a typical potentiometer. There are three pins, just as there are on the RIO’s analog inputs. The middle pin is the signal pin, while the outer pins can both be either power or ground.

As mentioned before, a potentiometer is a voltage divider, as shown in the circuit diagram on the right. As the potentiometer shaft turns, the resistances R1 and R2 change; however, their sum remains constant 1. Thus, the voltage across the entire potentiometer remains constant (for the roboRIO, this would be 5 volts), but the voltage between the signal pin and either the voltage or ground pin varies linearly as the shaft turns.

Since the circuit is symmetric, it is reversible - this allows the user to choose at which end of the travel the measured voltage is zero, and at which end it is 5 volts. To reverse the directionality of the sensor, it can simply be wired backwards! Be sure to check the directionality of your potentiometer with a multimeter to be sure it is in the desired orientation before soldering your wires to the contacts.

Absolute encoders

An “absolute encoder” is an encoder that measures the absolute position of the encoder shaft, rather than the incremental movement (as a quadrature encoder) does. In this respect, absolute encoders are more similar to potentiometers than to incremental encoders. Many absolute encoders offer a simple analog output - these can be used exactly in the same way as a potentiometer, except their wiring is not generally reversible. Absolute encoders have the advantage of lacking a hard travel limit - the signal will simply reset when the shaft crosses the zero point.

Absolute encoders that do not offer a simple analog output require more complicated communications with the RIO.

Footnotes

	1

	The way this actually works is generally by having the shaft control the position of a contact along a resistive “wiper” of fixed length along which the current flows - the resistance is proportional to the length of wiper between the contact and the end of the wiper.

 Digital Inputs - Hardware

Digital Inputs - Hardware

Note

This section covers digital input hardware. For a software guide to digital inputs, see Digital Inputs - Software.

A digital signal [https://en.wikipedia.org/wiki/Digital_signal] is a signal that can be in one of several discrete states. In the vast majority of cases, the signal is the voltage in a wire, and there are only two states for a digital signal - high, or low (also denoted 1 and 0, or true and false, respectively).

The roboRIO’s built-in digital input-output ports (or “DIO”) ports function on 5V, so “high” corresponds to a signal of 5V, and “low” to a signal of 0V 1 2.

Connecting to the roboRIO DIO ports

Note

Additional DIO ports are available through the “MXP” expansion port. To use these, a breakout board of some sort that connects to the MXP is needed.

Warning

Always consult the technical specifications of the sensor you are using before wiring the sensor, to ensure that the correct wire is being connected to each pin. Failure to do so can result in damage to the device.

Warning

Never directly connect the power pin to the ground pin on any port on the roboRIO! This will trigger protection features on the roboRIO and may result in unexpected behavior.

[image: Roborio DIO Ports]

The roboRIO has 10 built-in DIO ports (numbered 0-9), as seen in the image above. Each port has three pins - signal (“S”), power (“V”), and ground (“⏚”). The “power” and “ground” pins are used to power the peripheral sensors that connect to the DIO ports - there is a constant 5V potential difference between the “power” and the “ground” pins 3 - the “power” pin corresponds to the “high” state (5V), and the “ground” to “low” (0V). The signal pin is the pin on which the signal is actually measured (or, when used as an output, the pin that sends the signal).

All DIO ports have built in “pull-up” resistors between the power pins and the signal pins - these ensure that when the signal pin is “floating” (i.e. is not connected to any circuit), they consistently remain in a “high” state.

Connecting a simple switch to a DIO port

The simplest device that can be connected to a DIO port is a switch (such as a limit switch). When a switch is connected correctly to a DIO port, the port will read “high” when the circuit is open, and “low” when the circuit is closed.

A simple switch does not need to be powered, and thus only has two wires. Switches should be wired between the signal and the ground pins of the DIO port. When the switch circuit is open, the signal pin will float, and the pull-up resistor will ensure that it reads “high.” When the switch circuit is closed, it will connect directly to the ground rail, and thus read “low.”

Connecting a powered sensor to a DIO port

Many digital sensors (such as most no-contact proximity switches) require power in order to work. A powered sensor will generally have three wires - signal, power, and ground. These should be connected to the corresponding pins of the DIO port.

Connecting a sensor that uses multiple DIO ports

Some sensors (such as quadrature encoders) may need to connect to multiple DIO ports in order to function. In general, these sensors will only ever require a single power and a single ground pin - only the signal pin of the additional port(s) will be needed.

Footnotes

	1

	More-precisely, the signal reads “high” when it rises above 2.0V, and reads “low” when it falls back below 0.8V - behavior between these two thresholds is not guaranteed to be consistent.

	2

	The roboRIO also offers 3.3V logic via the “MXP” expansion port; however, use of this is far less-common than the 5V.

	3

	All power pins are actually connected to a single rail, as are all ground pins - there is no need to use the power/ground pins corresponding to a given signal pin.

 Encoders - Hardware

Encoders - Hardware

Note

This section covers encoder hardware. For a software guide to encoders, see Encoders - Software.

Quadrature encoders are by far the most common method for measuring rotational motion in FRC, and for good reason - they are cheap, easy-to-use, and reliable. As they produce digital signals, they are less-prone to noise and interference than analog devices (such as potentiometers).

The term “quadrature” refers to the method by which the motion is measured/encoded. A quadrature encoder produces two square-wave pulses that are 90-degrees out-of-phase from each other, as seen in the picture below:

[image: Encoding Direction]

Thus, across both channels, there are four total “edges” per period (hence “quad”). The use of two out-of-phase pulses allows the direction of motion to be unambiguously determined from which pulse “leads” the other.

As each square wave pulse is a digital signal, quadrature encoders connect to the digital input ports on the RIO.

Types of encoders

There are three types of quadrature encoders typically used in FRC:

	Shafted encoders

	On-shaft encoders

	Magnetic encoders

These encoders vary in how they are mounted to the mechanism in question. In addition to these types of encoders, many FRC mechanisms come with quadrature encoders integrated into their design.

Shafted encoders

Shafted encoders have a sealed body with a shaft protruding out of it that must be coupled rotationally to a mechanism. This is often done with a helical beam coupling, or, more cheaply, with a length of flexible tubing (such as surgical tubing or pneumatic tubing), fastened with cable ties and/or adhesive at either end. Many commercial off-the-shelf FRC gearboxes have purpose-built mounting points for shafted encoders, such as the popular Grayhill 63r [http://www.grayhill.com/assets/1/7/Opt_Encoder_63R.pdf].

On-shaft encoders

On-shaft encoders (such as the AMT103-V [https://www.cuidevices.com/product/motion/rotary-encoders/incremental/modular/amt10-v-kit/amt103-v] available through FIRST Choice) couple to a shaft by fitting around it, forming a friction coupling between the shaft and a rotating hub inside the encoder.

Magnetic encoders

Magnetic encoders require no mechanical coupling to the shaft at all; rather, they track the orientation of a magnet fixed to the shaft. The CTRE Mag Encoder [https://www.ctr-electronics.com/srx-magnetic-encoder.html] is a popular option, with many FRC products offering built-in mounting options for it. While the no-contact nature of magnetic encoders can be handy, they often require precise construction in order to ensure that the magnet is positioned correctly with respect to the encoder.

Encoder resolution

Warning

The acronyms “CPR” and “PPR” are both used by varying sources to denote both edges per revolution and cycles per revolution, so the acronym alone is not enough to tell which is of the two is meant when by a given value. When in doubt, consult the technical manual of your specific encoder.

As encoders measure rotation with digital pulses, the accuracy of the measurement is limited by the number of pulses per given amount of rotational movement. This is known as the “resolution” of the encoder, and is traditionally measured in one of two different ways: edges per revolution, or cycles per revolution.

Edges per revolution refers to the total number of transitions from high-to-low or low-to-high across both channels per revolution of the encoder shaft. A full period contains four edges.

Cycles per revolution refers to the total number of complete periods of both channels per revolution of the encoder shaft. A full period is one cycle.

Thus, a resolution stated in edges per revolution has a value four times that of the same resolution stated in cycles per revolution.

In general, the resolution of your encoder in edges-per-revolution should be somewhat finer than your smallest acceptable error in positioning. Thus, if you want to know the mechanism plus-or-minus one degree, you should have an encoder with a resolution somewhat higher than 360 edges per revolution.

 Gyroscopes - Hardware

Gyroscopes - Hardware

Note

This section covers gyro hardware. For a software guide to gyros, see Gyroscopes - Software.

Gyroscopes (or “gyros”, for short) are devices that measure rate-of-rotation. These are particularly useful for stabilizing robot driving, or for measuring heading or tilt by integrating (adding-up) the rate measurements to get a measurement of total angular displacement.

Several popular FRC devices (known as “inertial measurement units,” or “IMUs”) combine both an accelerometer and a gyroscope. Some popular examples are:

	Analog Devices ADIS16448 and ADIS 16470 IMUs [https://www.analog.com/en/landing-pages/001/first.html]

	CTRE Pigeon IMU [https://www.ctr-electronics.com/gadgeteer-imu-module-pigeon.html]

	Kauai Labs NavX [https://pdocs.kauailabs.com/navx-mxp/]

Types of gyros

There are two types of Gyros commonly-used in FRC: single-axis gyros, and three-axis gyros.

Single-axis gyros

As per their name, single-axis gyros measure rotation rate around a single axis. This axis is generally specified on the physical device, and mounting the device in the proper orientation so that the desired axis is measured is highly important. Single-axis gyros generally output an analog voltage corresponding to the measured rate of rotation, and so connect to the roboRIO’s analog input ports.

The Analog Devices ADXRS450 FRC Gyro Board [https://www.analog.com/en/landing-pages/001/first.html] that has been in FIRST Choice in recent years is a commonly used single axis gyro.

Three-axis gyros

Three-axis gyros measure rotation rate around all three spacial axes (typically labeled x, y, and z).

Peripheral three-axis gyros may simply output three analog voltages (and thus connect to the analog input ports, or (more commonly) they may communicate with one of the roboRIO’s serial buses.

 Sensors

Sensors

	Sensor Overview - Hardware

	Analog Inputs - Hardware

	Analog Potentiometers - Hardware

	Digital Inputs - Hardware

	Proximity Switches - Hardware

	Encoders - Hardware

	Gyroscopes - Hardware

	Ultrasonics - Hardware

	Accelerometers - Hardware

	LIDAR - Hardware

	Triangulating Rangefinders

	Serial Buses

 LIDAR - Hardware

LIDAR - Hardware

LIDAR (light detection and ranging) sensors are a variety of rangefinder seeing increasing use in FRC.

LIDAR sensors work quite similarly to ultrasonics, but use light instead of sound. A laser is pulsed, and the sensor measures the time until the pulse bounces back.

Types of LIDAR

There are two types of LIDAR sensors commonly used in current FRC: 1-dimensional LIDAR, and 2-dimensional LIDAR.

1-Dimensional LIDAR

A 1-dimensional (1D) LIDAR sensor works much like an ultrasonic sensor - it measures the distance to the nearest object more or less along a line in front of it. 1D LIDAR sensors can often be more-reliable than ultrasonics, as they have narrower “beam profiles” and are less susceptible to interference.

1D LIDAR sensors generally output an analog voltage proportional to the measured distance, and thus connect to the roboRIO’s analog input ports.

2-Dimensional LIDAR

A 2-dimensional (2D) LIDAR sensor measures distance in all directions in a plane. Generally, this is accomplished (more-or-less) by simply placing a 1D LIDAR sensor on a turntable that spins at a constant rate.

Since, by nature, 2D LIDAR sensors need to send a large amount of data back to the roboRIO, they almost always connect to one of the roboRIO’s serial buses.

Caveats

LIDAR sensors do suffer from a few common drawbacks:

Like ultrasonics, LIDAR relies on the reflection of the emitted pulse back to the sensor. Thus, LIDAR critically depends on the reflectivity of the material in the wavelength of the laser. The FRC field wall is made of polycarbonate, which tends to be transparent in the infrared wavelength (which is what is generally legal for FRC use). Thus, LIDAR tends to struggle to detect the field barrier.

2D LIDAR sensors (at the price range legal for FRC use) tend to be quite noisy, and processing their measured data (known as a “point cloud”) can involve a lot of complex software. Additionally, there are very few 2D LIDAR sensors made specifically for FRC, so software support tends to be scarce.

As 2D LIDAR sensors rely on a turntable to work, their update rate is limited by the rate at which the turntable spins. For sensors in the price range legal for FRC, this often means that they do not update their values particularly quickly, which can be a limitation when the robot (or the targets) are moving.

Additionally, as 2D LIDAR sensors are limited in angular resolution, the spatial resolution of the point cloud is worse when targets are further away.

 Proximity Switches - Hardware

Proximity Switches - Hardware

Note

This section covers proximity switch hardware. For a guide to using proximity switches in software, see Digital Inputs - Software.

One of the most common sensing tasks on a robot is detecting when an object (be it a mechanism, game piece, or field element) is within a certain distance of a known point on the robot. This type of sensing is accomplished by a “proximity switch.”

Proximity switch operation

Proximity switches are switches - they operate a circuit between an “open” state (in which there is not connectivity across the circuit) and a “closed” one (in which there is). Thus, proximity switches generate a digital signal, and accordingly, they are almost always connected to the roboRIO’s digital input ports.

Proximity switches can be either “normally-open,” in which activating the switch closes the circuit, or “normally closed,” in which activating the switch opens the circuit. Some switches offer both a NO and a NC circuit connected to the same switch. In practice, the effective difference between a NO and a NC switch is the behavior of the system in the case that the wiring to the switch fails, as a wiring failure will almost always result in an open circuit. NO switches are often “safer,” in that a wiring failure causes the system to behave as if the switch were pressed - as switches are often used to prevent a mechanism from damaging itself, this mitigates the chance of damage to the mechanism in the case of a wiring fault.

Types of proximity switches

There are several types of proximity switches that are commonly-used in FRC:

	Mechanical proximity switches (“limit switches”)

	Magnetic proximity switches

	Inductive proximity switches

	Photoelectric proximity switches

Mechanical proximity switches (“limit switches”)

Mechanical proximity switches (more commonly known as “limit switches”) are probably the most-commonly used proximity switch in FRC, due to their simplicity, ease-of-use, and low cost. A limit switch is quite simply a switch attached to a mechanical arm. The switch is activated when an object pushes against the switch arm, actuating the switch.

Limit switches vary in size, the geometry of the switch-arm, and in the amount of “throw” required to activate the switch. While limit switches are quite cheap, their mechanical actuation is sometimes less-reliable than no-contact alternatives. However, they are also extremely versatile, as they can be triggered by any physical object capable of moving the switch arm.

Magnetic proximity switches

Magnetic proximity switches are activated when a magnet comes within a certain range of the sensor. Accordingly, they are “no-contact” switches - they do not require contact with the object being sensed.

There are two major types of magnetic proximity switches - reed switches and hall-effect sensors. In a reed switch, the magnetic field causes a pair of flexible metal contacts (the “reeds”) to touch each other, closing the circuit. A hall-effect sensor, on the other hand, detects the induced voltage transversely across a current-carrying conductor. Hall-effect sensors are generally the cheaper and more-reliable of the two.

Magnetic proximity switches may be either “unipolar,” “bipolar,” or “omnipolar.” A unipolar switch activates and deactivates depending on the presence of a given pole of the magnet (either north or south, depending on the switch). A bipolar switch activates from the proximity of one pole, and deactivates from the proximity of the opposite pole. An omnipolar switch will activate in the presence of either pole, and deactivates when no magnet is present.

While magnetic proximity switches are often more reliable than their mechanical counterparts, they require the user to mount a magnet on the object to be sensed - thus, they are mostly used for sensing mechanism location.

Inductive proximity switches

Inductive proximity switches are activated when a conductor of any sort comes within a certain range of the sensor. Like magnetic proximity switches, they are “no-contact” switches.

Inductive proximity switches are used for many of the same purposes as magnetic proximity switches. Their more-general nature (activating in the presence of any conductor, rather than just a magnet) can be either a help or a hindrance, depending on the nature of the application.

Photoelectric proximity switches

Photoelectric proximity switches are the last type of no-contact proximity switch in widespread use in FRC. Photoelectric proximity switches contain a light source (usually an IR laser) and a photoelectric sensor that activates the switch when the detected light (which bounces off of the sensor target) exceeds a given threshold.

Since photoelectric proximity switches rely on measuring the amount of reflected light, they are often inconsistent in their triggering range between different materials - accordingly, most photoelectric sensors have an adjustable activation point (typically controller by turning a screw somewhere on the sensor body). On the other hand, photoelectric sensors are also extremely versatile, as they can detect a greater variety of objects than the other types of no-contact switches.

Photoelectric sensors are also often often used in a “beam break” configuration, in which the emitter is separate from the sensor. These typically activate when an object is interposed between the emitter and the sensor.

 Sensor Overview - Hardware

Sensor Overview - Hardware

Note

This section covers sensor hardware, not the use of sensors in code. For a software sensor guide, see Sensor Overview - Software.

In order to be effective, it is often vital for robots to be able to gather information about their surroundings. Devices that provide feedback to the robot on the state of its environment are called “sensors.” There are a large variety of sensors available to FRC teams, for measuring everything from on-field positioning to robot orientation to motor/mechanism positioning. Making use of sensors is an absolutely crucial skill for on-field success; while most FRC games do have tasks that can be accomplished by a “blind” robot, the best robots rely heavily on sensors to accomplish game tasks as quickly and reliably as possible.

Additionally, sensors can be extremely important for robot safety - many robot mechanisms are capable of breaking themselves if used incorrectly. Sensors provide a safeguard against this, allowing robots to, for example, disable a motor if a mechanism is against a hard-stop.

Types of sensors

Sensors used in FRC can be generally categorized in two different ways: by function, and by communication protocol. The former categorization is relevant for robot design; the latter for wiring and programming.

Sensors by function

Sensors can provide feedback on a variety of different aspects of the robot’s state. Sensor functions common to FRC include:

	Proximity switches

	Mechanical proximity switches (“limit switches”)

	Magnetic proximity switches

	Inductive proximity switches

	Photoelectric proximity switches

	Distance sensors

	Ultrasonic sensors

	Triangulating rangefinders

	LIDAR

	Shaft rotation sensors

	Encoders

	Potentiometers

	Accelerometers

	Gyroscopes

Sensors by communication protocol

In order for a sensor to be useful, it must be able to “talk” to the roboRIO. There are three main methods by which sensors can communicate their readings to the roboRIO:

	Analog input

	Digital input

	Serial bus

	SPI

	I2C

	RS232

	USB

In general, support for sensors that communicate via analog and digital inputs is straightforward, while communication over serial bus is more complicated.

 Serial Buses

Serial Buses

In addition to the digital and analog inputs, the roboRIO also offers several methods of serial communication with peripheral devices.

Both the digital and analog inputs are highly limited in the amount of data that can be send over them. Serial buses allow users to make use of far more-robust and higher-bandwidth communications protocols with sensors that collect large amounts of data, such as inertial measurement units (IMUs) or 2D LIDAR sensors.

Types of supported serial buses

The roboRIO supports four basic types of serial communications:

	I2C

	SPI

	RS-232

	USB

Additionally, the roboRIO supports communications with peripheral devices over the CAN bus. However, as the FRC CAN protocol is quite idiosyncratic, relatively few peripheral sensors support it (though it is heavily used for motor controllers).

I2C

[image: roboRIO I2C] [image: I2C Pinout]

To communicate to peripheral devices over I2C, each pin should be wired to its corresponding pin on the device. I2C allows users to wire a “chain” of slave devices to a single port, so long as those devices have separate IDs set.

The I2C bus can also be used through the MXP expansion port. The I2C bus on the MXP is independent. For example, a device on the main bus can have the same ID as a device on the MXP bus.

SPI

[image: roboRIO SPI] [image: SPI Pinout]

To communicate to peripheral devices over SPI, each pin should be wired to its corresponding pin on the device. The SPI port supports communications to up to four devices (corresponding to the Chip Select (CS) 0-3 pins on the diagram above).

The SPI bus can also be used through the MXP expansion port. The MXP port provides independent clock, and input/output lines and an additional CS.

RS-232

[image: roboRIO RS-232] [image: RS-232 Pinout]

To communicate to peripheral devices over RS-232, each pin should be wired to its corresponding pin on the device.

The RS-232 bus can also be used through the MXP expansion port.

The RoboRIO RS-232 serial port uses RS-232 signaling levels (+/- 15v). The MXP serial port uses CMOS signaling levels (+/- 3.3v).

Note

By default, the onboard RS-232 port is utilized by the roboRIO’s serial console. In order to use it for an external device, the serial console must be disabled using the Imaging Tool or roboRIO Web Dashboard.

USB

[image: roboRIO USB]

The roboRIO has three USB ports: 1x USB-B, and 2x USB-A. These can be connected to devices with standard USB cables.

MXP expansion port

[image: roboRIO MXP] [image: MXP Pinout]

Several of the serial buses are also available for use through the roboRIO’s MXP expansion port. This port allows users to make use of many additional digital and analog inputs, as well as the various serial buses.

Many peripheral devices attach directly to the MXP port for convenience, requiring no wiring on the part of the user.

 Triangulating Rangefinders

Triangulating Rangefinders

Triangulating rangefinders (often called “IR rangefinders,” as they commonly function in the infrared wavelength band) are another common type of rangefinder used in FRC.

Unlike LIDAR, triangulating rangefinders do not measure the time between the emission of a pulse and the receiving of a reflection. Rather, most IR rangefinders work by emitting a constant beam at a slight angle, and measuring the position of the reflected beam. The closer the point of contact of the reflected beam to the emitter, the closer the object to the sensor.

Using IR rangefinders

IR Rangefinders generally output an analog voltage proportional to the distance to the target, and thus connect to the analog input ports on the RIO.

Caveats

IR rangefinders suffer similar drawbacks to 1D LIDAR sensors - they are very sensitive to the reflectivity of the target in the wavelength of the emitted laser.

Additionally, while IR rangefinders tend to offer better resolution than LIDAR sensors when measuring at short distances, they are also usually more sensitive to differences in orientation of the target, especially if the target is highly-reflective (such as a mirror).

 Ultrasonics - Hardware

Ultrasonics - Hardware

Note

This section covers ultrasonic sensor hardware. For a software guide to ultrasonics, see Ultrasonics - Software.

Ultrasonic rangefinders are some of the most common rangefinders used in FRC. They are cheap, easy-to-use, and fairly reliable. Ultrasonic rangefinders work by emitting a pulse of high-frequency sound, and then measuring how long it takes the echo to reach the sensor after bouncing off the target. From the measured time and the speed of sound in air, it is possible to calculate the distance to the target.

Types of ultrasonics

While all ultrasonic rangefinders operate on the “ping-response” principle outlined above, they may vary in the way they communicate with the roboRIO.

Analog ultrasonics

Analog ultrasonics output a simple analog voltage corresponding to the distance to the target, and thus connect to an analog input port. The user will need to calibrate the voltage-to-distance conversion in software.

Ping-response ultrasonics

While, as mentioned, all ultrasonics are functionally ping-response devices, a “ping response” ultrasonic is one configured to connect to both a digital input and a digital output. The digital output is used to send the ping, while the input is used to read the response.

Serial ultrasonics

Some more-complicated ultrasonic sensors may communicate with the RIO over one of the serial buses.

Caveats

Ultrasonic sensors are generally quite easy to use, however there are a few caveats. As ultrasonics work by measuring the time between the pulse and its echo, they generally measure distance only to the closest target in their range. Thus, it is extremely important to pick a the right sensor for the job. The documentation for ultrasonic sensors will generally include a picture of the “beam pattern” that shows the shape of the “window” in which the ultrasonic will detect a target - pay close attention to this when selecting your sensor.

Ultrasonic sensors are also susceptible to interference from other ultrasonic sensors. In order to minimize this, the roboRIO can run ping-response ultrasonics in a “round-robin” fashion - however, in competition, there is no sure way to ensure that interference from sensors mounted on other robots does not occur.

Finally, ultrasonics may not be able to detect objects that absorb sound waves, or that redirect them in strange ways. Thus, they work best for detecting hard, flat objects.

 roboRIO

roboRIO

	Formatando seu roboRIO

	roboRIO Web Dashboard

	roboRIO FTP

	roboRIO User Accounts and SSH

	roboRIO Brownout and Understanding Current Draw

	Recovering a roboRIO using Safe Mode

	Additional Help [https://www.ni.com/en-us/innovations/white-papers/15/imaging-the-roborio-and-common-troubleshooting-techniques.html]

 Recovering a roboRIO using Safe Mode

Recovering a roboRIO using Safe Mode

Occasionally a roboRIO may become corrupted to the point that it cannot be recovered using the normal boot and imaging process. Booting the roboRIO into Safe Mode may allow the device to be successfully re-imaged.

Booting into Safe Mode

[image: ../../../_images/recovering-a-roborio-using-safe-mode-1.png]
To boot the roboRIO into Safe Mode:

	Apply power to the roboRIO

	Press and hold the Reset button until the Status LED lights up (~5 seconds) then release the Reset button

	The roboRIO will boot in Safe Mode (indicated by the Status LED flashing in groups of 3)

Recovering the roboRIO

The roboRIO can now be imaged by using the roboRIO Imaging Tool as described in Imaging your roboRIO.

About Safe Mode

In Safe Mode, the roboRIO boots a separate copy of the operating system into a RAM Disk. This allows you to recover the roboRIO even if the normal copy of the OS is corrupted. While in Safe Mode, any changes made to the OS (such as changes made by accessing the device via SSH or Serial) will not persist to the normal copy of the OS stored on disk.

 roboRIO Brownout and Understanding Current Draw

roboRIO Brownout and Understanding Current Draw

In order to help maintain battery voltage to preserve itself and other control system components such as the radio during high current draw events, the roboRIO contains a staged brownout protection scheme. This article describes this scheme, provides information about proactively planning for system current draw, and describes how to use the new functionality of the PDP as well as the DS Log File Viewer to understand brownout events if they do happen on your robot.

roboRIO Brownout Protection

The roboRIO uses a staged brownout protection scheme to attempt to preserve the input voltage to itself and other control system components in order to prevent device resets in the event of large current draws pulling the battery voltage dangerously low.

Stage 1 - 6v output drop

Voltage Trigger - 6.8V

When the voltage drops below 6.8V, the 6V output on the PWM pins will start to drop.

Stage 2 - Output Disable

Voltage Trigger - 6.3V

When the voltage drops below 6.3V, the controller will enter the brownout protection state. The following indicators will show that this condition has occurred:

	Power LED on the roboRIO will turn Amber

	Background of the voltage display on the Driver Station will turn red

	Mode display on the Driver Station will change to Voltage Brownout

	The CAN/Power tab of the DS will increment the 12V fault counter by 1.

	The DS will record a brownout event in the DS log.

The controller will take the following steps to attempt to preserve the battery voltage:

	PWM outputs will be disabled. For PWM outputs which have set their neutral value (all speed controllers in WPILib) a single neutral pulse will be sent before the output is disabled.

	6V, 5V, 3.3V User Rails disabled (This includes the 6V outputs on the PWM pins, the 5V pins in the DIO connector bank, the 5V pins in the Analog bank, the 3.3V pins in the SPI and I2C bank and the 5V and 3.3V pins in the MXP bank)

	GPIO configured as outputs go to High-Z

	Relay Outputs are disabled (driven low)

	CAN-based motor controllers are sent an explicit disable command

The controller will remain in this state until the voltage rises to greater than 7.5V or drops below the trigger for the next stage of the brownout

Stage 3 - Device Blackout

Voltage Trigger - 4.5V

Below 4.5V the device may blackout. The exact voltage may be lower than this and depends on the load on the device.

The controller will remain in this state until the voltage rises above 4.65V when the device will begin the normal boot sequence.

Avoiding Brownout - Proactive Current Draw Planning

[image:]

The key to avoiding a brownout condition is to proactively plan for the current draw of your robot. The best way to do this is to create some form of power budget. This can be a complex document that attempts to quantify both estimated current draw and time in an effort to most completely understand power usage and therefore battery state at the end of a match, or it can be a simple inventory of current usage. To do this:

	Establish the max “sustained” current draw (with sustained being loosely defined here as not momentary). This is probably the most difficult part of creating the power budget. The exact current draw a battery can sustain while maintaining a voltage of 7+ volts is dependent on a variety of factors such as battery health and state of charge. As shown in the NP18-12 data sheet [https://www.farnell.com/datasheets/575631.pdf], the terminal voltage chart gets very steep as state of charge decreases, especially as current draw increases. This datasheet shows that at 3CA continuous load (54A) a brand new battery can be continuously run for over 6 minutes while maintaining a terminal voltage of over 7V. As shown in the image above (used with permission from Team 234s Drive System Testing document [https://www.chiefdelphi.com/t/paper-new-control-functions-drive-system-testing/139165]), even with a fresh battery, drawing 240A for more than a second or two is likely to cause an issue. This gives us some bounds on setting our sustained current draw. For the purposes of this exercise, we’ll set our limit at 180A.

	List out the different functions of your robot such as drivetrain, manipulator, main game mechanism, etc.

	Start assigning your available current to these functions. You will likely find that you run out pretty quickly. Many teams gear their drivetrain to have enough torque to slip their wheels at 40-50A of current draw per motor. If we have 4 motors on the drivetrain, that eats up most, or even exceeds, our power budget! This means that we may need to put together a few scenarios and understand what functions can (and need to be) be used at the same time. In many cases, this will mean that you really need to limit the current draw of the other functions if/while your robot is maxing out the drivetrain (such as trying to push something). Benchmarking the “driving” current requirements of a drivetrain for some of these alternative scenarios is a little more complex, as it depends on many factors such as number of motors, robot weight, gearing, and efficiency. Current numbers for other functions can be done by calculating the power required to complete the function and estimating efficiency (if the mechanism has not been designed) or by determining the torque load on the motor and using the torque-current curve to determine the current draw of the motors.

	If you have determined mutually exclusive functions in your analysis, consider enforcing the exclusion in software. You may also use the current monitoring of the PDP (covered in more detail below) in your robot program to provide output limits or exclusions dynamically (such as don’t run a mechanism motor when the drivetrain current is over X or only let the motor run up to half output when the drivetrain current is over Y).

Measuring Current Draw using the PDP

The FRC Driver Station works in conjunction with the roboRIO and PDP to extract logged data from the PDP and log it on your DS PC. A viewer for this data is still under development.

In the meantime, teams can use their robot code and manual logging, a LabVIEW front panel or the SmartDashboard to visualize current draw on their robot as mechanisms are developed. In LabVIEW, you can read the current on a PDP channel using the PDP Channel Current VI found on the Power pallet. For C++ and Java teams, use the PowerDistributionPanel class as described in the Power Distribution Panel article. Plotting this information over time (easiest with a LV Front Panel or with the SmartDashboard by using a Graph indicator can provide information to compare against and update your power budget or can locate mechanisms which do not seem to be performing as expected (due to incorrect load calculation, incorrect efficiency assumptions, or mechanism issues such as binding).

Identifying Brownouts

[image:]

The easiest way to identify a brownout is by clicking on the CAN\Power tab of the DS and checking the 12V fault count. Alternately, you can review the Driver Station Log after the fact using the Driver Station Log Viewer. The log will identify brownouts with a bright orange line, such as in the image above (note that these brownouts were induced with a benchtop supply and may not reflect the duration and behavior of brownouts on a typical FRC robot).

 roboRIO FTP

roboRIO FTP

Note

The roboRIO has both SFTP and anonymous FTP enabled. This article describes how to use each to access the roboRIO file system.

SFTP

SFTP is the recommended way to access the roboRIO file system. Because you will be using the same account that your program will run under, files copied over should always have permissions compatible with your code.

Software

There are a number of freely available programs for SFTP. This article will discuss using FileZilla. You can either download and install FileZilla [https://filezilla-project.org/download.php?type=client] before proceeding or extrapolate the directions below to your SFTP client of choice.

Connecting to the roboRIO

[image: ../../../_images/roborio-connect.png]
To connect to your roboRIO:

	Enter the mDNS name (roboRIO-TEAM-frc.local) in the “Host” box

	Enter “lvuser” in the Username box (this is the account your program runs under)

	Leave the Password box blank

	Enter “22” in the port box (the SFTP default port)

	Click Quickconnect

Browsing the roboRIO filesystem

[image: ../../../_images/roborio-filesystem.png]
After connecting to the roboRIO, Filezilla will open to the \home\lvuser directory. The right pane is the remote system (the roboRIO), the left pane is the local system (your computer). The top section of each pane shows you the hierarchy to the current directory you are browsing, the bottom pane shows contents of the directory. To transfer files, simply click and drag from one side to the other. To create directories on the roboRIO, right click and select “Create Directory”.

FTP

[image: ../../../_images/roborio-ftp.png]
The roboRIO also has anonymous FTP enabled. It is recommended to use SFTP as described above, but depending on what you need FTP may work in a pinch with no additional software required. To FTP to the roboRIO, open a Windows Explorer window (on Windows 7, you can click Start->My Computer). In the address bar, type ftp://roboRIO-TEAM-frc.local and press enter. You can now browse the roboRIO file system just like you would browse files on your computer.

 roboRIO User Accounts and SSH

roboRIO User Accounts and SSH

Note

This document contains advanced topics not required for typical FRC programming

The roboRIO image contains a number of accounts, this article will highlight the two used
for FRC and provide some detail about their purpose. It will also describe how to connect
to the roboRIO over SSH.

roboRIO User Accounts

The roboRIO image contains a number of user accounts, but there are two of primary interest for FRC.

Admin

The “admin” account has root access to the system and can be used to manipulate OS files or settings. Teams should take caution when using this account as it allows for the modification of settings and files that may corrupt the operating system of the roboRIO. The credentials for this account are:

Username: admin

Password:

Note

The password is intentionally blank.

Lvuser

The “lvuser” account is the account used to run user code for all three languages. The credentials for this account should not be changed. Teams may wish to use this account (via ssh or sftp) when working with the roboRIO to ensure that any files or settings changes are being made on the same account as their code will run under.

Danger

Changing the default ssh passwords for either “lvuser” or “admin” will prevent C++ and Java teams from uploading code.

SSH

SSH (Secure SHell) is a protocol used for secure data communication. When broadly referred to regarding a Linux system (such as the one running on the roboRIO) it generally refers to accessing the command line console using the SSH protocol. This can be used to execute commands on the remote system. A free client which can be used for SSH is PuTTY: https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Open Putty

[image: ../../../_images/open-putty.png]
Open Putty (clicking OK at any security prompt). Then set the following settings:

	Host Name: roboRIO-TEAM-frc.local (where TEAM is your team number, example shows team 40)

	Connection Type: SSH

Other settings can be left at defaults. Click Open to open the connection. If you see a prompt about SSH keys, click OK.

If you are connected over USB you can use 172.22.11.2 as the hostname. If your roboRIO is set to a static IP you can use that IP as the hostname if connected over Ethernet/wireless.

Log In

[image: ../../../_images/log-in.png]
When you see the prompt, enter the desired username (see above for description) then press enter. At the password prompt press enter (password for both accounts is blank).

 roboRIO Web Dashboard

roboRIO Web Dashboard

The roboRIO web dashboard is a webpage built into the roboRIO that can
be used for checking status and updating settings of the roboRIO.

Unlike the 2015-2018 roboRIO web dashboard, the 2019 web dashboard does
not use SilverLight. Users may encounter issues using IE (compatibility)
or Edge (mDNS site access). Alternate browsers such as Google Chrome or
Mozilla Firefox are recommended for the best experience.

Note

The roboRIO web dashboard was been re-written for 2019. All CAN
configuration functionality has been removed. Configuration of CAN
devices should be done with software provided by the device vendor. For
CTRE devices previously serviced using the webdashboard, the appropriate
software is CTRE Phoenix
Tuner [https://phoenix-documentation.readthedocs.io/en/latest/ch03_PrimerPhoenixSoft.html#what-is-phoenix-tuner].

Opening the WebDash

[image:]

To open the web dashboard, open a web browser and enter the address of
the roboRIO into the address bar (172.22.11.2 for USB, or
“roboRIO-####-FRC.local where #### is your team number, with no leading
zeroes, for either interface). See this document for more details about
mDNS and roboRIO networking: IP Configurations

System Configuration Tab

[image:]

The home screen of the web dashboard is the System Configuration tab
which has 5 main sections:

	Navigation Bar - This section allows you to navigate to different
sections of the web dashboard. The different pages accessible through
this navigation bar are discussed below.

	System Settings - This section contains information about the System
Settings. The Hostname field should not be modified manually, instead
use the roboRIO Imaging tool to set the Hostname based on your team
number. This section contains information such as the device IP,
firmware version and image version.

	Startup Settings - This section contains Startup settings for the
roboRIO. These are described in the sub-step below

	System Resources (not pictured) - This section provides a snapshot of
system resources such as memory and CPU load.

Startup Settings

[image:]

	Force Safe Mode - Forces the controller into Safe Mode. This can be
used with troubleshooting imaging issues, but it is recommended to
use the Reset button on the roboRIO to put the device into Safe Mode
instead (with power already applied, hold the rest button for 5
seconds). Default is unchecked.

	Enable Console Out - This enables the on-board RS232 port to be used
as a Console output. It is recommended to leave this enabled unless
you are using this port to talk to a serial device (note that this
port uses RS232 levels and and should not be connected to many
microcontrollers which use TTL levels). Default is checked.

	Disable RT Startup App - Checking this box disables code from running
at startup. This may be used for troubleshooting if you find the
roboRIO is unresponsive to new program download. Default is unchecked

	Disable FPGA Startup App - This box should not be checked.

	Enable Secure Shell Server (sshd) - It is recommended to leave this
box checked. This setting enables SSH which is a way to remotely
access a console on the roboRIO. Unchecking this box will prevent C++
and Java teams from loading code onto the roboRIO.

	LabVIEW Project Access -** It is recommended to leave this box
checked.** This setting allows LabVIEW projects to access the
roboRIO.

Network Configuration

[image:]

This page shows the configuration of the roboRIO’s network adapters.
It is not recommended to change any settings on this page. For more
information on roboRIO networking see this article: IP Configurations

_images/ds-icon.png
FRC Driver Station Log Viewer

_images/ds-messages-tab.png
R —

Warning 44002 Ping Results: link-bad, D radio(.4)-
bad, robot radio(.1)-bad, cRIO(.2)-bad, FMs-bad FRC:
Driver Station ping status has changed. Driver Station
Warning 44004 FRC: The Driver Station has lost

communication with the robot. Driver Station

_images/ds-charts-tab.png

_images/ds-diagnostics-tab.png
Communications Versions & Info

Lib:
PCM: 161
FMS.

Jaguar: 108
® Enet 192.168.71.116 Rt

» wifi @

#USB Reboot roboRIO.

Firewall(Dom, Pub, Prv)
Restart Robot Code@

EnetLink DS: 180614
[t RIO: FRC_roboRI0_2018 v16
Robot (172.22.11.2) @

_images/ds-operation-tab.png
TeleOperated Elapsed l'lme@O:oo_o Team # 40

A () pcanven () Bl 1o2v

Communications mm

Test PCCPU% B ° munications
Joysticks

Window = 1 °

@isable Teleoperated
TeamStation Red1 v@ Disabled

_images/ds-setup-tab.png
ractice Timing (s)

Zo—
P

Delay
Teleoperated

_images/drive-subsystem-project-explorer.jpg
[Drive
[Commands

=) Drive for Time.vi

Drive Immediate.vi
Read Drive Operation.vi
Reserve Drivewvi

=
=
=
=
|, Stop Driving.vi
=
=
=

Template for Drive Immediate with Deadband.vit
Template for Drive Immediate.vit
Template for Drive with Duration.vit
[& Implementation

Infrastructure
[} Drive Check for New Command.vi
| Drive Command Helper.vi
[} Drive Controller Initialization.vi
=, [Diive Controllervi
[#) Drive Operations.ctl
|s, Drive Published Globals.i
[i) Drive Setpoints.ctl
L jwl Score Macrowi

_images/ds-can-power-tab.png
Disable #Short #
Comms 0 6V 0

12v o 5V 0
5V 0 EX

CAN Metrics
Utilization %

Bus Off
TXFull
Receive

Transmit

© © © © o

_images/drive-immediate-diogram.jpg
14 "Immediate", Default '

Operation
Left Setpoint
Right Setpoint

Duration
Distance (feet)

Hold motor values for ~50ms. Finish, and reserve, if
|we exceed that time. This is mostly to deal with
deadbanded joystick.

_images/drive-immediate.jpg
b

_images/bring-3.png
& Phoenix Tuner Version (0.7.3.0)

Options Tools Windows Help Selected CAN Device: Omar's CANifier

Controller Install evice Control Config

Change the name: |Omar's CANifier

Press to animate device LEDs and confirm ID is correct. |

_images/bring-4.png
& Phoenix Tuner Version (0.73.0)
Options Tools Windows Help Selected CAN Device: Omar's CANifier -

ot Controlle Instal

Field-Upgrade Device Firmware

‘Select GRF and Press Update Firmware’ to flash new firmware.

[Update all CANifier devices.
Update Device:

Updating http://172.22.11.

_images/bring-23.png
8 package frc.robot;

°

10 import com.ctre.phoenix.motorcontrol.ControlMode;
11 import com.ctre.phoenix.motorcontrol.can.TalonSRX;

12

13 import edu.wpi.first.wpilibj.Joystick;

14 Ii-pon edu.wpi. first.upilibj.TimedRobot;
15

16 public class Robot extends TimedRobot {

17 TalonSRX _talon@ = new TalonSRX(8);

18 Joystick _joystick = new Joystick(e);

19

20 | @override

21 public void teleopPeriodic() {

2 double stick = _joystick.getRawAxis(@);
23 _talon@. set(ControlMode.PercentOutput, stick);
24 3}

25}

26

PROBLEMS OUTPUT DEBUGCONSOLE TERMINAL

-C-> chmod +x "/home/Ivuser/MyJavaProject-1.jar"; chown lvuser "/home/lvuser/MyJavaProject-1.jar" @
~C-> sync @ /home/lvuser

(11>
-C-> . /etc/profile.d/natinst-path.sh; /usr/local/frc/bin/frcKillRobot.sh ~t -r 2> /dev/null @ /home,

> Task :deployNativeZipRoborio
42 file(s) are up-to-date and were not deployed

-C-> chmod -R 777 "/usr/local/frc/third-party/1ib" || true; chown -R lvuser:ni “/usr/local/frc/third
-C-> ldconfig @ /usr/local/frc/third-party/lib

Deprecated Gradle features were used in this build, making it incompatible with Gradle 6.0.
Use *--warning-mode all' to show the individual deprecation warnings.
See https://docs. gradle.org/5.e/userguide/comand_line_interface. html#sec:comand_line warnings

BUILD SUCCESSFUL in 55
10 actionable tasks: 8 executed, 2 up-to-date

_images/bring-24.png
Forward
Switch
Mode

Li

Normally
Open.

Normally
Closed

Disabled

Reverse
Limit Switch
Mode

Normally
Open.

Normally
Closed

Disabled

Limit
Switch
NO pin

pind

Limit
Switch
NO pin

ping

NC pin

pind

Limit

NC pin

ping

COM pin

pin10

pin10

pin10

pin10

Motor Drive

Switch open
Fwd. throttle

Y

N
Y

Motor Drive

Switch open
Rev. throttle

Limit Switch Ground - pin10 on Talon SRX

Motor Drive
Switch closed
Fwd. throttle

Y
Y

Motor Drive
Switch closed
Rev. throttle

Limit Switch Input Forward Input - pind on Talon SRX
Limit Switch Input Reverse Input - ping on Talon SRX

“Voltage
(Switch
Open)

~25V

ov

“Voltage
(Switch
Open)

~25V

ov

“Measured voltage at the Talon SRX Limit Switch Input pin.

“Voltage
(Switch
Closed)

ov

~25V

“Voltage
(Switch
Closed)

ov

~25V

_images/bring-7.png
& Phoenix Tuner Version (0.7.3.0)

Options Tools Windows Help

FTalon 1 - Left
| Talon SRX (Device ID 2)
Running Appication. Talon SRX (Device ID 3)

Talon SRX (Device ID 4)
Repwing Aechcalion. Talon SRX (Device D 5)
Rurning Applcation. Talon SRX (Device ID §)
B Aphcatia Talon SRX (Device ID 7)
Running Application. | Talon SRX (Device ID 8)
A Talon 1-Left Running Application. | Talon SRX (Device ID 9)
Telon SRX (Device ID 10) _ Running Appication. Tellon SRX (Device ID 10)
< Talon SRX (Device ID 1)
| Talon SRX (Device ID 12)
Talon SRX (Device D 13)
Omar's CANifier
PDP (Device ID 0)

Change the ID: 0 [=
Change the name: |Pigeon (Device ID 0)
Press to animate device LEDs and confirm ID s correct.

_images/bring-8.png
& Phoenix Tuner Version (07.3.0) - o x

Options Tools Windows Help. Selected CAN Device: Pigeon (Device 1D 0)

[Beect the device in the center o dropdown, then Press the "Self Test” button.
Jint: Use CNTRL + Mouse Wheel to adjust fontsize.

Updating http://172.22.11.2:1250 CTRE Devices... OK g5 oeonini

_images/bring-5.png
% Phoenix Tunes Version (073.0)

Options Tools Windows _Help

Toon R Devee D 1)
Tion R Devee 12)
Tion R Devee D 13)
Ton X Devee D7)
Toon R Devie 3)
T R Devee 9
Toon R Devie 5
Tion R Devee)
Toon R Devie 7)
Tion R Devie D)
#Toon R Devie)
Wvictor 0-Left

[——

0x Sept3, 2017
ic2 00 17, 215

01 Yovs, 2016
as Hou3, 2014
33 tow3, 2014
as Sept 10, 2014
33 tou3, 2014
33 Hou3, 2014
3s g 19,2015
33 tow3, 214
33 Sept 10, 014
33 tou3, 2014
33 Sept 10, 014
s Septin, 2014
3s Sept 10, 2014
33 tow3, 2014
as Sept 10, 2014
33 Yov 15,2007

Updating http://172.22.11.2:1250 CTRE Devices. ..

ok

Server Version:
0730 (Dec 22 2018,00:11:40)

_images/bring-6.png
& Phoenix Tuner Version (0.7.3.0)

Options Tools Windows Help Selected CAN Device: Talon 0 - Right

ot Controller In:

Devices (Count:19) Software Status Hardware
¥ Omar's CANifier Running Application. CANifier
@PcM (Device 1D 0) Running Application. PCM

@ PDP (Device ID 0) Running Application. PDP
M8 rigeon (Device ID 0) Running Application. Pigeon
4P Talon 0 -Right Running Application. Talon SRX
AP Talon 1-Left Running Application. Talon SRX
4P Talon SRX (Device ID 10) Running Application. Talon SRX
<

5288882 ®
&

General Device Configuration
Change the ID: 0
Change the name: [Talon 0 - Right
Press to animate device LEDs and confirm ID is correct.

Field-Upgrade Device Firmware
Select CRF and Press “Update Firmware” to flash new firmware.

| Electronics \LifeBoat\HERO Firmware Files\TalonSrx-Application-4. 1-MPA-2019.crf|
I Update all Talon SRX devices.

Update Device

Updating http://172.22.11.2:1250 CTRE Devi

_images/bring-9.png
& Phoenix Tuner Version (07:30) - o x
Options Toos Windows Help Selected CAN Device: Bigeon Deice D) -

fruts:0

[ssdris0
lQuaterion (v xy,2): 0.475329, -L000ASS, 0241816, -0.034196

et x t02:
lccal it Y 10
e it 10

foyo: (005, 0,05, 0.00)dos.
lacaum Gyro: (21,083, -901.934, 1078.501) deg
IMag: 0.00, 0.00, 0.00)urs

ag Strength: 28,751

Joce: 26156.00,-21680.00,-19641.00) s

G Loded)
gt evice LED" s stcky ot

228000532
PamRRRR

Senver Version:

Updating http://172.22.11.2:1250 CTRE Devices... OK o302 5018001140

_images/bring-mc-getVI.png

_images/circuit-breaker.png

_images/clar-no-app.png
‘Startup Settings

L Force safe Mode

[¥] Enable Console Out

(] Disable FPGA Startup App.
[¥| Enable Secure Shell Server (sshd)

(] LabVIEW Project Access.

_images/can-id-example.png
Example
Speed Control Mode Disable from Luminary Micro Jaguar Speed Controller (dev # 4)

API Device
Field Device Type API Class Index Number
Value 2 1 1 4

Bits. 0] 0] 0] 1| 0] 0| 0| O] O] O] 1j0j0j0[0/0|0|0[1]|0|0
Bit Position 28]27|26|25| 24| 15/14/13|12|11|10]9|8|7|6|5]|4|3|2|1|0

_images/checking-bios-settings.jpg

_images/config-in-progress.png
FRC Br B
File_Tools

Checking for bridge at expected o
| =]

Configuring ccaputer TP address PY E

Checking for bridge at expected 1o({fresses

=)

Radio: | DAP1522 RevB Mode: 2.4GHz Access Point

DO NOT USE AT FRC EVENTS

_images/configuring-project.png
I Create New FRC Robot Project [=

Selectproject name,folder, and P adcfress &) Project Robot Proectivpre)
Project name. B My Computer
2016 Robort Project & B, R roboRI0 Target 172.2211.2)
@
Projec older
C:\Users\koconnor\ Documents\ LabVIEW Data\ | () =
i
=
i
=
- Robot Global Dstai
s Teleop.
L Tets
s} Vision Processingai
L R
% g
& B

< Back Nett>

_images/config-completed.png
File_Tools

Verifying bridge settings

Configuring computer IF address
Checking for bridge at expected IP addresses
Bridge found at default IP address
Resetting bridge

Checking for bridge at default Ip address
Bridge found at default IP address
Configuring bridge ssctings

Recennecting to

Verifying bridge

Radio: DAP1522 RevB | Mode: 2.4GHz Access Point

DO NOT USE AT FRC EVENTS

_images/config-errors.png
File_Tools

Checking for bridge at expected IP addresses
Configuring computer TP address
Checking for bridge at expected TP addresses

Please ensure that.
-WIFi connections are disabled on this computer
he wireless bidge is the only devics connected via sthemet

o ‘Bridge programming failed: Could not locate bridge-

Ifthis error st occurs afer the above conditions are met,
try power cycling of manuallyreseting the brdge

=)

Radio: | DAP1522 RevB ¥/ Mode: 2.4GHz Access Point v

DO NOT USE AT FRC EVENTS

_images/confirm-connectivity-tethered.png
B commmtions ree (v)
< enetunk oo 10
Oshadle targest O
e D 257
B emm

Restart oot code

ey
RorUnavaiaie
U unastle

Team# 40
[o000

oy =

Teleoperated
Disabled

_images/brownout-diagram.png
PLOT 1 - AMPS and VOLTS v. Time — 2.5 Second Window

s ToTaL vours

_images/copy-complete.png
Copy to H:\

) Copvcompleted k.

Remember to use the ‘Eject Drive'button before you unplug the dive,

_images/copy-files-dialog.png
fles?.

‘COPY fils to drive or EXTRACT from afile?

“Yes' = COPY FOLDER CONTENTS directly to the drive.
"No' = EXTRACT FILES from an iso/zip/72/gzip/cablrar/vhd/lzh/img/ima.

COPY FOLDER (Yes/No

_images/confirmation-dialog-2.png
RMPARTUSB

(OKTO ERASE ALL DATA ON THIS DRIVE
and reate a new partton?

_images/control-panel-dhcp.png
 Wireless Network Connection Properties

Networking | Sharng]

Connect using
& IntelR) Centrno(R) Utimate-N 6300 AGN

“This connection uses the folwing fems:

P8 Gt for Microsoft Networks
005 Packe Scheduer
123 Fie and Prter Shan or ol Networks
[-4 Intel® Centrino® Wireless Blutooth® + High Speed Pro.
-4 Intemet Protocol Version 6 (TCP/IPv6)
temet Protocol Version 4 (TCP/IPv4)
- Link-Layer Topology Discovery Mapper 1/0 Driver
- Link-Layer Topology Discovery Responder

nstal

Desciption
Transrission Cortrol Potocol/ tocol. The defauit

wide area netiwork prtocol that provides communication
across dverse interconnected networks.

Uninstal Propeties

oK Cancel

Internet Protocol Version 4 (TCP/IPvA) Properties

o

General [alternate Configuration

for the appropriate P settngs.

) Obtain an P address automaticaly.
Use the follwing IP address:

1P address:
Subnet mask:

Default gateway:

Obtain DINS server address automatically
Use the following DS server addresses:

Preferred DIS server:

Alternate DS server:

Vaidate settings upon exit

You can get I settings assigned automaticaly i your network supports
this capabiity. Otherwise, you need to ask your network adminstrator

_images/creating-a-project.png
B3 FRC 2016 Getting Started

File Operate Tools Help

t2} LabVIEW 7€

Projects >
Tutorials Q
i nd =P 7 FRC roboRI0 Project
Support) FRC Dashboard Project
© More,
Open

[5) 2016 Robot Projct BetaSprej
D Browse.

_images/crf.png
Home Share View
X cut t y x =h [New item ~
2 Copy path b 4 = £ Easy access
Copy Paste Move Copy Delete Rename New
[2] Paste shortcut ¢4 to - folder
Clipboard Organize New

(3) ~ 1 > ThisPC » OS(C) » Users » Public » Public Documents » FRC »

w Name
Z OneDri
) 'I;o ""m 42X TalonSix-Application-1.01.crf
¥ PK:::"S [&f RobotUsageData.txt
48X PDP-Application-1.37.crf
18X PCM-Application-1.62.crf
& Homegroup .

Date modified

12/16/2014 9:30 PM
12/5/2014 3:10 PM

12/16/2014 9:30 PM
12/16/2014 9:30 PM

2 |

Properties
-

Ope

Type

CRF File
TXT File
CRF File
CRF File

_images/copy-os-files-option.png
File Edt Drive Bootloaders Settings Help.
DRIVE 1USB DISK (Removable) 7.4616iB

m

1 Parttion Sze (S) 2 Voums Label

Setpartion 83 non-bostate
=3 [Genesic. = par 42 fos

I Mo user promsts
3 Bootoader Optons Loty

@ WnPE2IRPEY3NistaWin? bootable BODTHGR] (CC4) -
© MSDOS boolsble 10.5YS] (003 snd CCADOSUFD)

© XP/BSHPE boolable NTLOR)

€ FREEDDS bostable KERNEL SYS)

€ SYSLINUX bostable [LDLINUX VS + SYSLINUX.CFG)

Retresh (F5)
Heb (1)

Testusing QENU
‘Emutor F11)

Erctome

orive fo

4 Flesystem and Overrides
I~ Boot as FOD (& noMBR)
Boot 22 ZIP A: il MR
€ Rat I” Boot a5 HOD (C. 2PTHS)
I Force use of LBA call
™ Use Bhd/32sec i porsibe

[NOACT ek s bax f you do not

© raTIE {want the drive to be bootable.

@ S Copy OS fies afer Format [~ BartE > Drive.

[Erer o Desoption

- wrrio | FOTWS Sp3 110510 perttn, formstand male botab a drive.

Instal grubddos

_images/counters.png
GPIO

Al

Analog
Trigger

LT L) Quadrature
Decoder(x8)

Rising/Falling
Interrupt (8x)

_images/confirm-connectivity-wireless.png
Teleoperated
Disabled

_images/confirmation-dialog-1.png
RMPREPUSB

Command:

‘RMPARTUSE DRIVE

VIINPE NTFS VOLLME

eneric

OK to execute command on Drive 17884V Generic Fach Disk ?

T e

_images/disable-network-adapter.png
Bluetooth Network Connection
¥ Dicsbied
0 biuetooth Deice (Pessonsl Aves

Local Area Connection
Network cable ur
X G Intel(R) 82579LM.

_images/disconnectedfromfms.png

_images/diffdrive.jpg

_images/digilentLight.png
Brake/Coast

LED2 CALLED i

LED 1 o LED 3

At power-on the RGB LEDS wildisplay a progressive biue color,which continually gets bighter. Thislastsfor approximately five seconds. During thistime the motor controller
will notrespond to an input signal, nor willthe output divers be enabled. After the nital power-on has completed the device willbegin norma operation and what gets
displayed on the RGB LEDs will be function of the input signal being applied, a wel as the current ault state. Assuring that o fault have occurred the RGB LEDs will
function as follows:

Servo Input Signal
Applied LEDState

Noinput signalorinvalid _ Alternate between top (LED and LED2) and bottom (LED3 and LED4) LEDS being on and off. When on, the LEDs display color s orange.
input pulse width

Neutralinput puise A4 LEDs on solid orange:
width

Positive input pulse LEDs biink green in clockvise ircular pattern (LED1—LED2—LED3—LED4—LED1). The rate at which the LEDs update s proportional to the
width duty cycle of the output and increases with increased duty cycle. At 100% duty cycle, al four LEDs tum on sold green.

Negative input pulse LEDs biink red in counter-clockwise cicular pttern (LED1 —-LED4—+LED3—LED2LED1), The rate at which the LEDs update i proportional to
width the duty cycle of the output and increases with increased duty cycl. At 100% duty cyce, a four LEDS tur on sold red.

9 Fault Indicators

When a fault condition s detected the output duty cycle is reduced to 08 and afault i signaled. The output will remain disabled for 3 seconds. During ths time the onboard
LEDS (LED?, LED?, LED3, and LED) are used to indicate the fault condition. The fault condi icated by togglng betuween the top (LED1 and LED2) and bottom (LED3 and
LED) LEDs being on and off. The top LEDS will be Red during ther on state. The colorof the bottom LEDs depends on which fauls are presently actve. The table below
describes how the colorof the bottom LEDS maps to the presently active faults.

Color Over Temperature Under Voltage
Green v x
Blue x v

CyanvAqua v v

_images/drive-for-time.jpg

_images/download-the-computer-image.png
) FIRST #acos mages

FRC Diiver Staton Images - 2016 Season

ek th e buton o coricad th i for yourvarity of computer.

o S ey e e s

-3

/

_images/drive-for-time-diogram.jpg
MOrive for Time” -]

_images/deploying-the-program.png
2015 Robot Pr -

File Edit View Project Operate Tools Window Help

oS % 0o X]Ew[E-ea

tems | Files

58] Project 2015 Robot Projectvproj
§ My Computer
£ 18 roboRIO (106.23.2)

T Support Code

Duplicate
Explore
Clean

Remove from Project

Help...
Properties

_images/detail-progress.png
Installing FRC Game Tools

Select Agree Review Perform

Installing NI FIRST Robotics Competition LabVIEW Update

Installing NI FIRST Robotics Competition LabVIEW Update

Next

_images/current-limit-1.png
Not limited

Current is below Continuous threshold AND

(Requested output is weaker** than applied motor Current is above Peak* Threshold for Peak Duration.
output OR is in the opposite direction). /

! . Reduce motor output (towards neutral).
Motor output is set to requested output.

Limited
Current is below Continuous threshold. Current is above Continuous threshold.
/ /
Ramp motor output towards requested output. Reduce motor output (towards neutral).

*If the configured Peak Threshold is less than the Continuous Threshold, the applied Peak Threshold is set equal to the Configured Continuous Threshold in
firmware.
** Both requested output and applied motor output are in the same direction, and requested output is closer to neutral.

nav.xhtml

 Table of Contents

 		
 Sistema de Controle da FIRST Robotics Competition

 		
 Primeiros passos

 		
 Introdução

 		
 Novo na Programação?

 		
 Do zero á um robô

 		
 Visão Geral dos Softwares de programação para FRC

 		
 Compatibilidade com o Sistema Operacional

 		
 LabVIEW para FRC (Somente Windows)

 		
 Visual Studio Code

 		
 Driver Station da FRC fornecida pela NI LabVIEW (Somente Windows)

 		
 Painel FRC LabVIEW (somente Windows)

 		
 SmartDashboard

 		
 Shuffleboard

 		
 Ferramenta de imagem FRC roboRIO (Somente Windows)

 		
 Configuração da câmera Axis (Somente Windows)

 		
 Visualizador de Registros da FRC Driver Station (Somente Windows)

 		
 RobotBuilder

 		
 OutlineViewer

 		
 Utilitário de configuração de rádio FRC (Somente Windows)

 		
 Visão geral do Hardware do Sistema de Controle de FRC®

 		
 National Instruments roboRIO

 		
 Power Distribution Panel

 		
 Pneumatics Control Module

 		
 Voltage Regulator Module

 		
 Controladores de Motor

 		
 Spike H-Bridge Relay

 		
 Servo Power Module

 		
 Microsoft Lifecam HD3000

 		
 OpenMesh OM5P-AN or OM5P-AC Radio

 		
 120A Circuit Breaker

 		
 Snap Action Circuit Breakers

 		
 Robot Battery

 		
 Crédito das Imagens

 		
 Offline Installation Preparation

 		
 Documentation

 		
 Installers

 		
 3rd Party Libraries/Software

 		
 Instalando LabVIEW para FRC (LabVIEW apenas)

 		
 Desinstale as Versões Antigas (Recomendado)

 		
 Getting LabVIEW installer

 		
 Installing LabVIEW

 		
 NI Update Service

 		
 Installing the FRC Game Tools

 		
 Uninstall Old Versions (Recommended)

 		
 Downloading the Update

 		
 .NET Framework 4.6.2

 		
 Welcome

 		
 NI Package Manager License

 		
 Disable Windows Fast Startup

 		
 NI Package Manager Review

 		
 NI Package Manager Installation

 		
 Product List

 		
 Additional Software

 		
 License Agreements

 		
 License Agreements Page 2

 		
 Review Summary

 		
 Detail Progress

 		
 Installation Summary

 		
 NI Activation Wizard

 		
 NI Activation Wizard (2)

 		
 NI Activation Wizard (3)

 		
 NI Activation Wizard (4)

 		
 NI Update Service

 		
 Reboot to Complete Installation

 		
 Como fazer o cabeamento de um robo para FRC

 		
 Materiais e componentes

 		
 Construindo a base do para o Sistema de Controle

 		
 Organize os principais componentes do Sistema de Controle

 		
 Fixe os componentes

 		
 Fixe o conector da bateria à PDP

 		
 Conecte o Disjuntor principal à PDP

 		
 Isole as conexões da PDP

 		
 Conectores Wago

 		
 Energizando controladores de motor

 		
 Conector Weidmuller

 		
 Energizando RoboRIO

 		
 Energizando Voltage Regulator Module (VRM)

 		
 Energizando Pneumatics Control Module (PCM) (opcional)

 		
 Ethernet e energia do rádio

 		
 Conectando o rádio ao RoboRIO

 		
 Dispositivos CAN

 		
 Cabos PWM

 		
 Robot Signal Light (RSL)

 		
 Circuit Breakers / Fusíveis

 		
 Energizando motor

 		
 STOP

 		
 Organize os fios

 		
 Formatando seu roboRIO

 		
 Configurando o roboRIO

 		
 Iniciando a ferramenta de imagem

 		
 Ferramenta de imagem do roboRIO

 		
 Visualizando o roboRIO

 		
 Progresso de visualização da imagem

 		
 Visualização completa

 		
 Solução de problemas

 		
 Programming your Radio

 		
 Pre-Requisites

 		
 Application Notes

 		
 Install the software

 		
 Launch the software

 		
 Allow the program to make changes, if prompted

 		
 Select the network interface

 		
 Open Mesh Firmware Note

 		
 Loading FRC Firmware to OpenMesh radio

 		
 Select a bridge model and operating mode

 		
 Select Options

 		
 Prepare and start the configuration process

 		
 Configuration Progress

 		
 Configuration completed

 		
 Configuration errors

 		
 Troubleshooting: Disabling Network Adapters

 		
 Getting Started with a Benchtop Robot

 		
 Creating your Benchtop Test Program (LabVIEW)

 		
 Creating a Project

 		
 Configuring Project

 		
 Running the Program

 		
 Deploying the program

 		
 Running your Benchtop Test Program

 		
 Overview

 		
 Tethered Operation

 		
 Starting the FRC Driver Station

 		
 Setting Up the Driver Station

 		
 Confirm Connectivity

 		
 Operate the Robot

 		
 Wireless Operation

 		
 FRC LabVIEW Programming

 		
 Instalando LabVIEW para FRC (LabVIEW apenas)

 		
 Desinstale as Versões Antigas (Recomendado)

 		
 Getting LabVIEW installer

 		
 Installing LabVIEW

 		
 NI Update Service

 		
 Installing the FRC Game Tools

 		
 Uninstall Old Versions (Recommended)

 		
 Downloading the Update

 		
 .NET Framework 4.6.2

 		
 Welcome

 		
 NI Package Manager License

 		
 Disable Windows Fast Startup

 		
 NI Package Manager Review

 		
 NI Package Manager Installation

 		
 Product List

 		
 Additional Software

 		
 License Agreements

 		
 License Agreements Page 2

 		
 Review Summary

 		
 Detail Progress

 		
 Installation Summary

 		
 NI Activation Wizard

 		
 NI Activation Wizard (2)

 		
 NI Activation Wizard (3)

 		
 NI Activation Wizard (4)

 		
 NI Update Service

 		
 Reboot to Complete Installation

 		
 Creating Robot Programs

 		
 Creating, Building and Loading your Benchtop Test Program

 		
 Tank Drive Tutorial

 		
 Command and Control Tutorial

 		
 LabVIEW Resources

 		
 LabVIEW Resources

 		
 Waiting for Target to Respond - Recovering from bad loops

 		
 Talon SRX CAN

 		
 How To Toggle Between Two Camera Modes

 		
 LabVIEW Examples and Tutorials

 		
 Add an Independent Motor to a Project

 		
 Keyboard Navigation with the roboRIO

 		
 Making a One-Shot Button Press

 		
 Adding Safety Features to Your Robot Code

 		
 How to Use Joystick Buttons to Control Motors or Solenoids

 		
 Local and Global Variables in LabVIEW for FRC

 		
 Using the Compressor in LabVIEW

 		
 Atuadores

 		
 Visão geral dos atuadores

 		
 Controladores de velocidade

 		
 Pneumática

 		
 Operando cilindros pneumáticos

 		
 Usando o sistema de controle da FRC para controlar a pneumática

 		
 Números de módulos PCM

 		
 Gerando e armazenando pressão

 		
 Controle Solenóide

 		
 Solenóides únicos no WPILib

 		
 Solenóides duplos no WPILib

 		
 Usando controladores de motor no código

 		
 Usando controladores de velocidade PWM

 		
 Controladores CAN motor

 		
 Controladores de velocidade PWM em profundidade

 		
 Controladores PWM, breve teoria de operação

 		
 Valores de saída brutos versus dimensionados

 		
 Usando WPILib para conduzir seu robô

 		
 Drivetrains padrão

 		
 Convenções de classe de unidade

 		
 Usando DifferentialDrive para controlar o comando diferencial (CMB) dos robôs

 		
 Movimento repetitivo de baixa potência - servos de controle com WPILib

 		
 LEDs

 		
 Referenciando os LEDs

 		
 Definindo a faixa para uma cor

 		
 Criando um efeito arco-íris

 		
 Sensores

 		
 Sensor Overview - Software

 		
 What sensors does WPILIB support?

 		
 Acelerômetros - Software

 		
 Acelerômetro analógico

 		
 A interface do acelerômetro

 		
 Third-party accelerometers

 		
 Usando acelerômetros no código

 		
 Gyroscopes - Software

 		
 The Gyro interface

 		
 Third-party gyros

 		
 Using gyros in code

 		
 Ultrasonics - Software

 		
 Ping-response ultrasonics

 		
 Analog ultrasonics

 		
 Third-party ultrasonics

 		
 Using ultrasonics in code

 		
 Contadores

 		
 Configuring a counter

 		
 Reading information from counters

 		
 Resetting a counter

 		
 Using counters in code

 		
 Encoders - Software

 		
 The Encoder class

 		
 Using encoders in code

 		
 Entradas analógicas - Software

 		
 Entradas analógicas - explicação

 		
 Usando entradas analógicas no código

 		
 Potenciômetros analógicos - Software

 		
 Explicação dos Potenciômetros analógicos

 		
 Usando potenciômetros analógicos no código

 		
 Digital Inputs - Software

 		
 The DigitalInput class

 		
 Creating a DigitalInput from an AnalogInput

 		
 Using DigitalInputs in code

 		
 CAN Devices

 		
 Using CAN Devices

 		
 Pneumatics Control Module

 		
 Power Distribution Panel

 		
 Creating a PDP Object

 		
 Reading the Bus Voltage

 		
 Reading the Temperature

 		
 Reading the Total Current and Energy

 		
 Reading Individual Channel Currents

 		
 Third-Party CAN Devices

 		
 Cross-the-Road Electronics

 		
 REV Robotics

 		
 Playing With Fusion

 		
 FRC CAN Device Specifications

 		
 Addressing

 		
 Protected Frames

 		
 Broadcast Messages

 		
 Requirements for FRC CAN Nodes

 		
 Basic Programming

 		
 Git Version Control Introduction

 		
 Prerequisites

 		
 Git Vocabulary

 		
 Repository

 		
 Commits

 		
 Branches

 		
 Merging

 		
 Resets

 		
 Forks

 		
 Gitignore

 		
 Additional Information

 		
 Suporte

 		
 Outras documentações

 		
 Fóruns

 		
 Under Control 1156

 		
 Suporte via telefone da NI

 		
 CTRE

 		
 Reporte de Bugs

 		
 Phoenix Software Reference Manual

 		
 Primer: CTRE CAN Devices

 		
 Primer: What is Phoenix Software

 		
 What is Phoenix Tuner?

 		
 Prepare your workstation computer

 		
 Before Installing Phoenix…

 		
 Test base FRC Installation - FRC LabVIEW

 		
 Test base FRC Installation - FRC C++ / Java

 		
 General Recommendations for FRC C++ / Java.

 		
 What to Download (and why)

 		
 Option 1: Windows installer (strongly recommended)

 		
 Option 2: Phoenix API via Non-Windows Zip

 		
 Phoenix Tuner

 		
 Device Firmware Files (crf)

 		
 Workstation Installation

 		
 Option 1: Windows Offline Installer (C++/Java/LabVIEW, HERO C#)

 		
 Option 2: Non-Windows Zip (C++/Java)

 		
 Post Installation Steps

 		
 FRC C++/Java - Verify Installation

 		
 FRC LabVIEW – Verify Installation

 		
 FRC Windows – Open Phoenix Tuner

 		
 FRC: Prepare NI roboRIO

 		
 Why prepare Robot Controller?

 		
 LabVIEW

 		
 How to prepare Robot Controller

 		
 Verify the robot controller - Tuner

 		
 roboRIO Connection (Wi-Fi/Ethernet)

 		
 Verify the robot controller - LabVIEW

 		
 Verify the robot controller - Web page

 		
 Verify the robot controller - HTTP API

 		
 Initial Hardware Testing

 		
 Bring Up: CAN Bus

 		
 Understand the goal

 		
 Check your wiring

 		
 Power up and check LEDs

 		
 Open Phoenix Tuner

 		
 LEDs are red – now what?

 		
 Approach 1 (best)

 		
 Approach 2 (easier)

 		
 Set Device IDs

 		
 Field upgrade devices

 		
 Pick device names (optional)

 		
 Self-test Snapshot

 		
 Driver Station Versions Page

 		
 Bring Up: PCM

 		
 Phoenix Tuner Self-test Snapshot

 		
 Bring Up: PDP

 		
 Getting sensor data

 		
 DriverStation Logs

 		
 2015 Kick off Kit PDPs

 		
 Bring Up: Talon FX/SRX and Victor SPX

 		
 Factory Default Motor Controller

 		
 Configuration

 		
 Method 1 – Use the configAll API

 		
 Method 2 – Factory Default and config* routines

 		
 Method 3 – Use Tuner

 		
 Control Signals

 		
 Test Drive with Tuner

 		
 Setting up non-FRC Control

 		
 Confirm FRC Unlock

 		
 Control tab

 		
 Plot tab

 		
 Test Drive with Robot Controller

 		
 Java: Sample driving code

 		
 Open-Loop Features

 		
 Inverts

 		
 Follower

 		
 Neutral Mode

 		
 Neutral Deadband

 		
 Ramping

 		
 Peak/Nominal Outputs

 		
 Voltage Compensation

 		
 Current Limit

 		
 Reading status signals

 		
 Limit Switches

 		
 Limit Switch Override Enable

 		
 Limit Switch As Digital Inputs

 		
 Remote Limit Switches

 		
 Soft Limits

 		
 Troubleshooting and Frequently Asked Questions

 		
 Driver Station Messages

 		
 What do I do when I see errors in Driver Station?

 		
 Driver Station says the firmware is too old.

 		
 Driver Station says the firmware could not be retrieved and to check the firmware and ID.

 		
 Driver Station Says “ERROR 7 Call Library Function Node…”

 		
 Driver Station Says Variant To Data in …

 		
 PCM

 		
 My compressor turns on and I have air pressure, but why isn’t my solenoid turning on?

 		
 Why isn’t the Compressor turning on? Why does the PCM COMP LED not turn on?

 		
 Driverstation

 		
 Imaging your Classmate (Veteran Image Download)

 		
 Prerequisites

 		
 Download the Computer Image

 		
 Preparation

 		
 RMPrep

 		
 Hardware Setup

 		
 Initial Driver Station Boot

 		
 Update Software

 		
 Errors during Imaging Process

 		
 FRC Driver Station Powered by NI LabVIEW

 		
 Starting the FRC Driver Station

 		
 Setting Up the Driver Station

 		
 Status Pane

 		
 Operation Tab

 		
 Diagnostics Tab

 		
 Setup Tab

 		
 USB Devices Tab

 		
 CAN/Power Tab

 		
 Messages Tab

 		
 Charts Tab

 		
 Both Tab

 		
 Driver Station Key Shortcuts

 		
 Programming Radios for FMS Offseason

 		
 Pre-Requisites

 		
 Application Notes

 		
 Download the software

 		
 Install the software

 		
 Launch the software

 		
 Allow the program to make changes, if prompted

 		
 Enter FMS-Lite Mode

 		
 Enter SSID

 		
 Enter WPA Key

 		
 Program Radios

 		
 Changing SSID or Key

 		
 Troubleshooting Dashboard Connectivity

 		
 LabVIEW Dashboard

 		
 SmartDashboard

 		
 Driver Station Best Practices

 		
 Prior To Departing For The Competition

 		
 At The Competition

 		
 Before Each Match

 		
 Driver Station Log File Viewer

 		
 Event Logs

 		
 Log Viewer UI

 		
 Using the Graph display

 		
 Event List

 		
 Filters

 		
 Identifying Logs from Matches

 		
 Identifying Common Connection Failures with the Log Viewer

 		
 Networking Introduction

 		
 Networking Basics

 		
 What is an IP Address?

 		
 Public vs Private IP Addresses

 		
 How are these addresses assigned?

 		
 What is link-local?

 		
 IP Addressing for FRC

 		
 mDNS

 		
 USB

 		
 Ethernet/Wireless

 		
 Summary

 		
 IP Configurations

 		
 TE.AM IP Notation

 		
 On the Field

 		
 In the Pits

 		
 roboRIO Network Troubleshooting

 		
 Ping roboRIO

 		
 USB Connection Troubleshooting

 		
 Ethernet Connection

 		
 Other things to check

 		
 Windows Firewall Configuration

 		
 Disabling Windows Firewall

 		
 Configure the firewall

 		
 Measuring Bandwidth Usage

 		
 Measuring Bandwidth Using the Performance Monitor (Win 7 only)

 		
 Measuring Bandwidth Usage using Wireshark

 		
 OM5P-AC Radio Modification

 		
 Opening the Radio

 		
 Apply Tape

 		
 Re-assemble Radio

_images/labview_restart.png
Installing LabVIEW Software for FRC

Select Agree Review Perform

Reboot to complete installation.

led in order to com

Reboot Now

_images/launching-the-imaging-tool.png
\ e R

_images/labview_start_install.png
Installing LabVIEW Software for FRC

Select Agree Review Perform
Review the following summary before continuing.
Y
¥ Install
JKI VI Package Manager 2019
LabVIEW (32-bit) Eng 9
LabVIEW Database Connectivity Toolkit (32-bi 2019
LabVIEW Real-Time Module English 2019
LabVIEW Report Generation Toolkit (32-bit) 2019
LabVIEW Robotics Module for FRC 2019
LabVIEW Runtime (32-bit) 2019
LabVIEW Runtime (32-bit) 2018 P13
LabVIEW Runtime (32-bit) 20155P1f13
LabVIEW Runtime (64-bit) 2018 P13
LabWindows/CVI Shared Runtime 2019
NI CompactRIO 19.00
NI Distributed System Manager 2(19.00
NI LabVIEW Command Line Interface 21
NI Update Service 19.00
NI-IMAQdx 19.00 v
Back Next

_images/livewindow-smartdashboard.png
) SmartDashboard - (2|5)

File View.
Subsystem 1
Spike 1(Off
Subsystem 2
Quadrature Encoder 1
Speed. 0.000
Distance 0.000
Distance per Tick 1.000
Reversed (=] Zero Distance
Victor 1

O oo [zn

_images/license-agreements.png
Installing FRC Game Tools

Select Agree Review Perform

You must accept the license agreements below to proceed.

FIRST Competition
NATIONAL INSTRUMENTS SOFTWARE LICENSE AGREEMENT

=

CAREFULLY READ THIS SOFTWARE LICENSE AGREEMENT ("AGREEMENT"). BY DOWNLOADING
THE SOFTWARE AND/OR CLICKING THE APPLICABLE BUTTON TO COMPLETE THE INSTALLATION
PROCESS, YOU AGREE TO BE BOUND BY THE TERMS OF THIS AGREEMENT. IF YOU DO NOT
WISH TO BECOME A PARTY TO THIS AGREEMENT AND BE BOUND BY ITS TERMS AND
CONDITIONS, DO NOT INSTALL OR USE THE SOFTWARE, AND RETURN THE SOFTWARE (WITH ALL
ACCOMPANYING WRITTEN MATERIALS AND THEIR CONTAINERS) WITHIN THIRTY (30) DAYS OF
RECEIPT. ALL RETURNS TO NI WILL BE SUBJECT TO NI'S THEN-CURRENT RETURN POLICY. If you
are accepting these terms on behalf of an entity, you agree that you have authority to bind the entity to
these terms

The terms of this Agreement apply to the computer software provided with this Agreement, all updates or
uparades to the software that mav be orovided later by NI as part of any maintenance. techrical supoort. or Y.
This license agreement applies to the following packages: NI FIRST Robotics Utilties

© | accept the above 2 license agreements.

O 1 do not accept all the license agreements.

Back Next

_images/log-in.png
[1ogin as: admin
[vT Linux Real-Time (run mode)

Log in with your NI-Buth credentials.

02500 keyposza-snceractive sucnentication.
Passwora
cmineranorzo-50:-+]

_images/locate-image.png
File Edt Drive Bootloaders Settings Help.
DRIVE 1USB DISK (Removable) 7.4616iB

m

1 Parttion Sze (S) 2 Voums Label

Setpartion 83 non-bostate
=3 [Genesic. = par 42 fos

T Ho user prompts
3 Bootoader Optons- trnge Took
@ WnPE2IRPEY3NistaWin? bootable BODTHGR] (CC4) -
© MSDOS boolsble 10.5YS] (003 snd CCADOSUFD)
© XP/BSHPE boolable NTLOR)

 FREEDDS boolable [KERNELSYS]
€ SYSLINUX bostable [LDLINUX VS + SYSLINUX.CFG)

Retresh (F5)
Heb (1)

Testusing QENU
‘Emutor F11)

Erctome

orive fo

4 Fiesystemand Overrdes

I Boot 5 FOD (A noMER)

CATIE - oot ss 2Pl wib MBR]

CFATR [Bootas HOD (C: 2PTHS)
™ Forceuse of LBA cals

CNIS [w2 i possitle

[NOACT ek s bax f you do not
{want the drive to be bootable.

[5 Copy OS flos ater Format [~ BartE > Drive.

[Erer o Desoption
steps 1105 o pateon, format and ke Botabea drve.

Instal grubddos

_images/lv-closedloopramp-1.png

_images/logviewer.png
201302080936 33 Fi
01302

Summary
FMS Light 0 Fied Time: 13/02/061436:

fimes - 22905923 PM
<RIO isconnected ot 23847555
<RIO connected 1t
<RI0 boot imes - 22906091 PM
<RIO isconnected ot 23854455
<FIO connected 1 times

(- ey

ostPackets

shude

[
Litency msecs &

Robot Disable

Connct {Radios Radio- Disconnect

Tip Time
LostPackets
Veltage
P

Robot Auto
Robot Tele
DS Dissble

DSAuto
DSTele

)

) VeltageFiter

Match Length

23600PM (23800PM 024000PM 024200PM 024400 PM 024600 PM

00613 020613 o263 020613 0206713

oS- 0 s
()

o06/13

. ©

()

_images/lv-currentlimit-1.png
O8] s

_images/labview-home.png
B3 FRC 2016 Getting Started

File Operate Tools Help

t2} LabVIEW 7€

Projects >
Tutorials Q
i nd =P 7 FRC roboRI0 Project
Support) FRC Dashboard Project
© More,
Open

[5) 2016 Robot Projct BetaSprej
D Browse.

_images/labview-frc.png
[FRC 2018 Getting Started

File Operate Tools Help

[

Projects >
Tutorials
Utilities.

Support

Blank VI
FRC roboRIO Project
%) FRC Dashboard Project
5 More.

Open
9 Browse.

_images/labview_fast_startup.png
NI Package Manager

Select Agree Review Perform

WARNING - Please Disable Windows Fast Startup

Fast startup may cause problems with detecting o using your hardware.
It is recommended that you disable fast startup.

Note:
You will need to contact your administrator to disable fast startup if this setting is
enabled through a group policy.

Disable Windows fast startup Windows Fast Startup Information

Back Next

_images/labview_additional_software.png
Installing LabVIEW Software for FRC

Select Agree Review Perform

Additional items you may wish to install:

JKI VI Package Manager
VI Package Manager helps you discover, create, and install LabVIEW add-ons.

LabVIEW Database Connectivity Toolkit (32-bit)
The LabVIEW Database Connectivity Toolkit helps you connect to local and remote databases and
implement common database operations

LabVIEW DataFinder Connectivity Vis (32-bit)
LabVIEW DataFinder Connectivity Vis provide files and libraries to connect to DataFinder Server

LabVIEW Real-Time Trace Viewer
Core files to analyze timing and event data, or trace session, of VI and thread events for applications
running on an RT target.

LabVIEW Report Generation Toolkit (32-bit)
The LabVIEW Report Generation Toolkit provides Vs for programmatically creating and editing
Microsoft Word and Excel reports from LabVIEW.

NI Certificates Installer
NI Certificates configures Microsoft Windows to always trust software from NI. When NI Certificates
are installed_no Windows securify nonuns annear for installers that have a valid National Instruments

—

v

Back Select All Deselect All Next

_images/labview_license_1.png
Installing LabVIEW Software for FRC

Select Agree Review Perform

You must accept the license agreements below to proceed.

DirectX 9.0 Functional Safety Editor Addendum i

NATIONAL INSTRUMENTS SOFTWARE LICENSE AGREEMENT

CAREFULLY READ THIS SOFTWARE LICENSE AGREEMENT ("AGREEMENT"). BY DOWNLOADING
THE SOFTWARE AND/OR CLICKING THE APPLICABLE BUTTON TO COMPLETE THE INSTALLATION
PROCESS, YOU AGREE TO BE BOUND BY THE TERMS OF THIS AGREEMENT. IF YOU DO NOT
WISH TO BECOME A PARTY TO THIS AGREEMENT AND BE BOUND BY ITS TERMS AND
CONDITIONS, DO NOT INSTALL OR USE THE SOFTWARE, AND RETURN THE SOFTWARE (WITHALL
AACCOMPANYING WRITTEN MATERIALS AND THEIR CONTAINERS) WITHIN THIRTY (30) DAYS OF
RECEIPT. ALL RETURNS TO NI WILL BE SUBJECT TO NI'S THEN-CURRENT RETURN POLICY If you

This license agreement applies to the following packages anager, NI Update Service, LabvIEW
Robotics Module for FRC, LabVIEW Runtime (32-bit), LabVIEW Runtime (32-bit), LabVIEW Runtime (64-bit),
NI Distributed System Manager 2019, NI LabVIEW Command Line Interface, Vision Development Module,

=

v
a
[]
v

@® | accept the above 6 license agreements.

O 1 do not accept all the license agreements.

Back Next

_images/labview_install_progress.png
Installing LabVIEW Software for FRC

Select Agree Review Perform

Upgrading NI Uninstaller

Installing NI Uninstaller 19.0.0

Next

_images/labview_package_manager_review.png
NI Package Manager

Select Agree Review Perform

Review the following summary before continuing.

¥ Upgrade

NI Package Manager 00

Back Next

_images/labview_license_2.png
Installing LabVIEW Software for FRC

Select Agree Review Perform

You must accept the license agreements below to proceed.

Microsoft Silverlight 5 EULA Microsoft Silverlight 5.1 Privacy Statement
MICROSOFT SOFTWARE LICENSE TERMS
MICROSOFT SILVERLIGHT 5

-

These license terms are an agreement between Microsoft Corporation (or based on where you live, one of
its affiliates) and you. Please read them. They apply to the software named above, which includes the
‘media on which you received it, if any. The terms also apply to any Microsoft

o updates (including but not limited to bug fixes, patches, updates, upgrades, enhancements, new
versions, and successors to the software, collectively called “updates™),

o supplements,
o Intemet-based services, and

* support services v

This license agreement applies to the following packages: NI System Components

@® | accept the above 2 license agreements.

O 1 do not accept all the license agreements.

Back Next

_images/labview_product_list.png
Installing LabVIEW Software for FRC

Select Agree

Select products

PROGRAMMING ENVIRONMENTS
LabVIEW (32-bit) English
ADD-ONS

LabVIEW Real-Time Module English
Vision Development Module
LabVIEW Robotics Module for FRC
DRIVERS

NI CompactRIO

NI-IMAQdx

Select All Deselect All

Review Perform

2019

2019
2019
2019

19.00
19.00

LabVIEW Software for FRC

LabVIEW Software for FRC provides
components that help FIRST Robotics
Competition (FRC) participants
program robots with LabVIEW.

LabVIEW Software for FRC is a
software suite that provides software
components required to use the
LabVIEW programming language for
the FRC. This suite includes LabVIEW.
Professional as well as software add-
ons such as the LabVIEW Real-Time
Module and the LabVIEW Vision
Development Module. LabVIEW
Software for FRC also includes
associated drivers

Next

_images/labview_product_info.png
Installing LabVIEW Software for FRC

Select Agree Review

Information about the products to be installed.

Perform

>

¥ NI OpenVINO Model Optimizer Support for Python 3.6

Configuring OpenVINO Support for Python 3.6

If you need to optimize deep leaming models using OpenVINO, then you need to install Python 3.6.
For more information see the "Deep Learning: OpenVINO Inference engine & Model Optimizer"
subsection in the Vision Development Module readme: http://www.ni.com/r/vdmreadme2019

¥ NI-IMAQdx High-Performance GigE Vision Driver

Intel Pro 1000 Network Interface Devices
Installing the NI-IMAQdx High-Performance GigE Vision Driver associates all Intel Pro 1000 network
interface devices with the High-Performance GigE Vision Driver. If you do not want to use the High-

Performance GigE Vision driver, click Back to return to the Select tab, and deselect the “NIIMAQdx
High-Performance GigE Vision Driver” option.

¥ NI-VISA

Back Next

_images/tuner-7.png
& Phoenix Tuner Version (1.5.8.0)

Options Tools Windows Help.

Plot

[Phoenix Tuner provides field-upgrade, configuration, and self-test for CTRE CAN Devices by communicating with a software library called Phoenix Diagnostics Server (linked into yo
[The Phoenix Diagnostics Server runs as part of any 2020 or later FRC f0bot project that uses Phoenix APL.

|Arteratively, a Temporary Diagnostic Server can be deployed in place of a robot project by pressing the Run Temporary Diagnostic Server button.

[This wil stop your robor project - Phoenix Diagnostic Server will be running instead. To run the C+= of Java robot project again, use the Restart Robot Code button, re-deploy the pr
|roboRIO. LabVIEW teams will need to re-deploy the robot project.

[You may enter your team number or roboRI0 IP address for server address, this s necessary to connect wirelessly to your robot. Tuner will react automatically when you change the.
it persistently.

Diagnostic Server Address or Team Number

Port:
122112

e
FRC roboRI0

Run Temporary Diagnostic Server

Restart Java / C++ UnDeploy LabVIEW /
Robot Code Temp Diagnostic Server

Raspberry Pi/Jetson/Linux Robot Controller

Install/Uninstal
Diagnostics Diagnostics
Force Diagnostc Server On/Off
Force Start Server Force Stop Server.

and RIO boot complete? Lost Comm, trying to reconnect to http://10.35.39.

:1250 GeneralError

_images/image2.png

_images/pcm-selftest-2.png
@ The self test completed successfully.

_images/tuner.png
Phoenix Tuner Version (07.3.0)

Options Tools Windows Help Selected CAN Device: PDP (Deice ID0) E

Devs (Cont19)
Pomars caiter
@r0 Dewce 00)

W7oeon Devce)
#7300 Rt

AT Lot

Ten SR Devie 0 10)
Toon R Devee D 1)
Tion R Devee 12)
Tion R Devee D 13)
Ton X Devee D7)
Toon R Devie 3)
T R Devee 9
Toon R Devie 5
Tion R Devee)
Toon R Devie 7)
Tion R Devie D)
#Toon R Devie)

Wvictor 0-Left

[— [——

Rurnig dokcaton. Caifer 0x Sept3, 2017
Rurning fopkatan._ P ic2 00 17, 215

01 Yovs, 2016
as Hou3, 2014
33 tow3, 2014
as Sept 10, 2014
33 tou3, 2014
33 Hou3, 2014
3s g 19,2015
33 tow3, 214
33 Sept 10, 014
33 tou3, 2014
33 Sept 10, 014
s Septin, 2014
3s Sept 10, 2014
33 tow3, 2014
as Sept 10, 2014
33 Yov 15,2007

Updating http://172.22.11.2:1250 CTRE Devices. ..

ok

Server Version:
0730 (Dec 22 2018,00:11:40)

_images/pcm-selftest-1.png
‘The self test completed succes
o test completed successfuly.

P s ensbied
Compresse s dose-looped on senor
Compressa 16 off

pressre s ful.

(rout) (om) (stcky)

_images/tuner-8.png
&) Phoenix Tuner Version (1.58.0) - o X

Options Tools Windows Help |

Plot <

[Phoenix Tuner provides field-upgrade, configuration, and self-test for CTRE CAN Devices by communicating with a software library called Phoenix Diagnostics Server (linked into your roboRIO application).
[The Phoenix Diagnostics Server runs as part of any 2020 or later FRC f0bot project that uses Phoenix APL.

|Arteratively, a Temporary Diagnostic Server can be deployed in place of a robot project by pressing the Run Temporary Diagnostic Server button.
[This wil stop your robor project - Phoenix Diagnostic Server will be running instead. To run the C+= or Java robot project again, use the Restart Robot Code button, re-deploy the project, or power-cicle the
|roboRIO. LabVIEW teams will need to re-deploy the robot project.

[You may enter your team number or roboRI0 IP address for server address, this is necessary to connect wirelessly to your robot. Tuner will react automatically when you change the server address and save
it persistently. ‘

Dragrostic Server Address or Team Number Port:
a2 <] [0z osmatrt 7]
FRC roboRI0

[Connecting to oboRIO. . (01/04/2020 8:27 AM)
(Connected .

sucessfull
Tt
\Witten fie: frome vuser PhoenixDiagnossicsProgram (PhoenixDisgnosticsProgram)

|Viitten ie: /mp)frcdebug (frcdebug)

Wiitten Rl /nome fvuser robotDebugCommand (robotDebugCommand) Restart Java / Cr+ UnDeploy LabVIEW /
lUpdating Fie Wiite Permissions Robot Code ‘Temp Diagnostic Server
[Syncng fiesystem to ensure fes are on the flash
Starting Temporary Disgnostics Server
Jusefocalffcfoin/frckiRobot.sh -t -+ Raspberry Pi/detson/Linux Robot Controller
(Confirm ciagnostics s ruming
IDagnostics Successfull Sterted (29235) nstal/Uninstal
[Puraton: 00:00:06.93 ‘Diagnostics ‘Diagnostics

Force Diagnostc Server On/Off

Force Start Server Force Stop Server

Updating http://172.22.11.2:1250 CTRE Devices ok Server Version:

1.8.1 (Jan 4 2020,05:40:20)

_images/image21.png

_images/pcm-sol-jumper.png
el

_images/uninstall-driver.png
{Dotads | Resurces | Powes Managemert |

uacomm Aheros ARSS6x Weeless Network Adapter

» g Disk diives
» 1 Display adapters Diver Provider: Qualcomm Atheros Commurications b
» €@ IDEATA/ATAPI conts
» B Imaging devices
»-@ Keyboards

-8 Mice and other pointi
» 8 Montors
489 Network sdapters Drver Doioie
& Bluetooth Device
& Bluetooth Device
 Quaicomm Atherd
& Reaiek PCle

R rocessors

& 88 SD host adapters
5§ Sound, video and ga
» 18 System devices
@ Universal Senal Bu: <o

Driver Date w2201

Update Drver e .

_images/image20.jpg

_images/pcm-selftest-3.png
@ The sef test complted successfuly.

PCM is enab
Compressor is cose-looped on sensor

_images/types-of-sensors.png

_images/image22.png
Marketplace Explore

Repositories
Your most active repositories will appear here.
Create a repository or explore repositories.

Learn Git and GitHub without any code!

Using the Hello World guide, you'll create a repository, start a
branch, write comments, and open a pull request.

Read the gui Start a project

Discover interesting projects and people to populate
your personal news feed.

Your news feed helps you keep up with recent activity on repositories you watch
Cart and neanle var fallaw

W GitHub Sponsors Matching Fund

Ready to support open source? GitHub will
match your contribution to developers
during their firt year in GitHub Sponsors.

() Welcome to the new dashboard. Get closer X
to the stuff you care about most.

Discover repositories
Kaldi-ast/kaldi

“This s the official location of the Kaldi project.

@ shell K6k

angular/angularfire2
The official Angular library for Firebase.

@ Tpescrpt 5k

rathena/rathena
tAthena is an open-source cross-platform MMORPG

@Ce+ K Lik

_images/pcm.jpg

_images/uninstall_select_components.png
& NI Package Manager

BROWSE PRODUCTS UPDATES INSTALLED @

Category v Maintainer Clear Filters Products only

REMOVE

Name Maintainer Category Version

NI Certificates Installer National Instruments Utilities 200

NI Command Line Interface for LabVIEW National Instruments Utilities 1.00

NI CompactRIO - C Series Module Support 18.0 National Instruments Other Software 180049152
NI CompactRIO 18.0 National Instruments Other Software 180049152
NI CompactRIO 18.0 LabVIEW Support National Instruments Other Software 180049152
NI Customer Experience Improvement Program (32-bit) National Instruments Utilities 311

NI Customer Experience Improvement Program (64-bit) National Instruments Utilities 310

NI Device Monitor 15.0 National Instruments Other Software 150049153
NI FIRST Robotics Competition 2019 Driver Station National Instruments Other Software 18.0.185

NI FIRST Robotics Competition Gamepad Tool National Instruments Other Software 18.0.181

NI FIRST Robotics Competition LabVIEW Update National Instruments Other Software 18.0.181

NI FIRST Robotics Simulation National Instruments Other Software 18.0.60

NI FIRST Robotics Utilities National Instruments Other Software 18.0.182
NI1/O Trace National Instruments Utilities 1800

NI LabVIEW 2015 Runtime National Instruments Programming Environments. 1550

NI LabVIEW 2016 Runtime National Instruments Programming Environments. 1650

NI LabVIEW 2017 Runtime National Instruments Programming Environments. 17.5.1

NI LabVIEW 2018 National Instruments Programming Environments. 1800

NI LabVIEW 2018 Runtime National Instruments Programming Environments. 1802

L]

NI Measurement & Automation Explorer National Instruments Utilities 1800

WD s

_images/image22.jpg

_images/pcm-tuner-1.png
& Phoenix Tuner Version (10.2.0) - o x

Options Tools Windows Help | Selected Device: PCM DevicelD0) 5
PCM (Device ID 0)
P55 bencetD -
| Rt Foloner (lose-Loop s been forced ofby deployed code.
| Rght Taon (Comp 15 0t "
revmres
Fat) o) i)

Expand Page for
field-upgrade/ID options

1214
Solenoid (): 12,08
(Compressor (4): 0.00

ILicht Device LED" to dear sticky faults (disables compressor momentariy).

luid:Jan 12019 21:19:47
JPress Refresh” to dose.

SelfTest Blink | Clear Faults

ok ‘Server Version:

Updating http://172.22.11.2:1250 CTRE Devices. e)

_images/uninstall_old_control_panel.png
Settings.

@ Home

Find a setting

Apps

Apps & features
i Default apps

m; Offline maps

@ Apps for websites
X Video playback

5 Startup

Apps & features
=4

n Mozilla Thunderbird 60.9.0 (x86 en-US)
National Instruments Software

Modify
navX-MXP version 3.1.366
NewBlue Video Essentials for Windows
NI Package Manager 18.0
Node.js
Notepad-++ (64-bit x64)

Npcap 0.99-r7

9/5/2019

126 MB
9/7/2019

9/5/2019

Uninstall

121 MB
2/9/2019

9/5/2019

9/5/2019

48.0 MB
10/8/2019

9.61 MB
9/5/2019

9/5/2019

_images/image3.png
GitHub Sponsors Mpfching Fund

Ready to support opéf source? GitHub will
match your contgfiution to developers
during their figfyear in GitHub Sponsors.

code!

() Welcome to the new dashboard. Get closer X

, start a 10 the stuffyou care about most

_images/pcmLight.png
-1-1-1- -

LED Fault Table
LED Strobe Slow Long
Green | No Fault-Robot Enabled | No Fault- Robot Disabled ‘
Orange v Sticky Fault »
No CAN Comm
Red ‘ e Compressor Faut
(Blinks Solenoid Index)

*If PCM LED contains more than one color, see LED Special States Table

LED Special States Table

LED Colors Problem
e Damaged Hardware
Orange
Sreen! n Bootioa
Orange
NoLED No Power /Incorrect Polarity

_images/usb-connection.png
-

N

4

sy
: S FIRST CECSH - - -
As—— ~—-ison
00N ol s . i
| Jwenan - SSHEs = C ~ 1 l,l B - - - -
o'
| olavy IdS vas Aes

GEVNENE « €
(LTCCIR N «

| Snivis ; =

. 43IMOd 1 ¥ \9 NV
SSASLL
~ \ NN
o W

—

_images/image3.jpg

_images/pcm01.jpg

_images/updating-firmware.png
x|
#RC roboRIO Imaging Tool - Version 19.0a17 e

00:80:2F:30:49:88
m2112
FRC_robaRI0_2015_v4
3.0.0f0 - Upgrade requred

_images/image4.png
s+ B

o m—"
GitHub Spi

Ready tosup
matchyour(New organization
during their{

New gist

New project

_images/pdpLight.png
(s @)
covn@)

WWW.CROSSTHEROADELECTRON

LED Fault Table

LED

Strobe

Slow Long

Red

No CAN Comm

*If PCM LED contains more than one color, see LED Special States Table

LED Special States Table

LED Colors

Problem

Red!

Damaged Hardware

In Bootioader

NoLED

No Power Incorrect Polarity

_images/image4.jpg

_images/pdp-2014.png
Devices (Count:5) SoftwareStatus Hardare D Frmware Version Manufacturer Date Booti

o CANifier (Device ID0) Running Application. CANifier w 0% 0
QPP Device 1D 0) Running Appicaton. PDP o 1w Aug 14, 2014 o
“WPDP (Device D 13) Running Application. PDP B 13 a

#F Tolon SRX (Device ID 1) Running Application. Talon SRX 01 an Nov3, 2014 26

et v A s o T ——— o

_images/verify-LV.png
FuEaHon] =1
erorin emorout
=

[2019 Robot Project vproj - ProjectE.. — O X

Fle Edt View Proect Opente Tools Window Hep
DS x b X|[8w| &« all)

ems Files

58 Project 2019 Rabot Project vpre) ~
& B_My Computer
| % Dependencies
| L& suildspeciications

B/, Torget (17222:112)

L Perodic Tasksai
L Robot GlobalDatasi
L Teleops

L Teti
L) Vision Processing i
s Robot Mainyi .

"
"
|14
"
"
1

"
|14
»

Control & Simulation
Bxpress.
Addons
Favorites
User Libraries
Selecta V..
Real-Time
FPGA Interface
Industrial Communications
WPl Robotics Library.
L Actuators
L Third Party Actuators

_images/image19.jpg

_images/image18.jpg

_images/pcm-lv-2.png

_images/om5p-ac-radio-modification-9.png

_images/talonsrx-motor-controller.png

_images/talonSRXLight.png
Blink Codes During Calibration

Status LEDs Blink Talon SRX State
Code
Flashing Red/Green Calibration Mode
Blinking Green Successful Calibration
Blinking Red Failed Calibration
Blink Codes During Normal Operation
LEDs Colors | Talon SRX State
Forward throtlle is applied.
Both Biinking Green | Blink rate s proportional to Duty Cycle
Reverse throttle is applied.
Both BinkngRed | Biink rate is proportonal to Duty Cycle
None None No Power is being applied to Talon SRX
LEDs Alternate’ Off/Orange | CCAN bus detected, robot disabled
LEDs Alternate’ OffiSlow Red CAN bus/PWM is not detected
LEDs Alternate’ OffiFast Red | Fault Detected
LEDs Altenate’ | Red/Orange. Damaged Hardvare
LEDs Strobe -
owanis® Qe OffiRed ‘ Forward Limit Switch or Forward Soft Limit
LEDs Strobe .
owards® 2 OffiRed Reverse Limit Switch o Reverse Soft Limit
LED1 Only
“closest” to Green/Orange In Boot-loader
MoV

BIC CAL Blink Codes

BIC CAL Button Color

Talon SRX State.

Solid Red

Brake Mode

off

Coast Mode

_images/image11.jpg

_images/open-putty.png
R PuTTY Configuration =)

- Session Basic optons for your PuTTY session
Logaing ‘Specty the destnation you want to connct to

Tenet

SSH

Serel Close window on ext:

Aways O Never (© Onlyon clean ext

_images/toggle-between-two-camera-modes.png

_images/image1.png
Q Why GitHub? -/ Enterprise Explore - Marketplace Pricing Signin

Built for
developers

GitHub is a development platform inspired by the
way you work. From open source to business, you
can host and review code, manage projects, and

build software alongside 36 million developers.
ign up for GitHub.

_images/open-control-panel.png
Computer

R

Command Prompt

Screensteps

@ FRC Drver Station

> Allprograms

Control Panel

Devices and Printers
Defautt Programs

Help and Support

[Search programs andfies

_images/teleop.png

_images/image13.jpg

_images/openmesh-firmware.png
£ FRC Radio Configuration Utiity - [

File Tools Help

Robot Name:

Team Number:
WPA Key:
Radio:

Mode:

: O

To program your wireless bridge: If asked to reset your wireless bridg
1) Connect power and Ethernet to the wireless bridge. 1) If Event WPA Kiosk: Follow on-screen prompts.
2) Make sure to use the Ethernet port shown above. 1) If Radio Config Utility: Select OpenMesh

3) Wait for the Power light to turn and stay solid. 2) Unplug power from the radio

4) Enter your team number, and a WPA key (optional), above 3) Press the "Load Firmware” buiton.

5)Press "Configure” the process should take 15-60 seconds 4)Follow the on-screen prompts.

_images/troubleshooting-dashboard-connectivity-2.png
Before

[7a1]

5z

_images/image12.jpg
VRM PCM PWR

4R RER

_images/open-wireless-device-properties.png
5[Mice and other pointing devices
» I Monitors
9/ & Network adapters
4P Bluetooth Device (Personal Area Network) #2
Bluetooth Device (RFCOMM Protocol TDI) #2
Atheros AR9S6x Wi ——
& Realtek PCle GBE Family Controller = Update Driver Software...
»Ji Processors Disable
> SD host adapters Uninstall
5.&§ Sound, video and game controllers
Sl System devices Scan for hardware changes

5 @ Universal Serial Bus controllers =
Properties =
1

sheet for the current selection.

_images/troubleshooting-dashboard-connectivity-1.png
2] FRC PC Dashboard [ESIE=>=

Drive | Basic | Custom | Test | Checklist Variables

Varisole Name Vaiue

Numerc
sting
sene
st
sune
suing
sting
senne
serne
Suing

_images/image15.jpg

_images/outline-viewer.png
OutiineViewer

File

Koy, Value, Type Preferences.

Server Mode ())

Root

Server Location | 190

|
|
|
| Defautport @)

Server Port 1735

_images/tuner-1.png
n & Filters "/

Best match

:-y‘ Phoenix Tuner
Desktop app

Search suggestions

£ tuner

£ tune]

_images/image14.jpg

_images/openmesh-radio.png

_images/troubleshooting-dashboard-connectivity-3.png
Smernetior

diable cuiee
|V EditSubsystems Ctrl+Shift+E
Reset LiveWindow CtrleR

e 5 mese

Reveal, Connection Indicator

_images/image17.jpg

_images/pcm-lv-1.png

_images/tuner-6.png
@ Phoenix Tunes Version (07.30) - o x

Optons _TeolsWindows _ Selected CAN Device: 5

sot3, 20
g 19,204
v, 2016
o3, 2014
o3, 204

hae oo 3] [e

Choge the e Chogeone
pres o snae devee LEDs sod confm Discorect, | Bk

Fild Uporade Device Frmware

ot RF s oo e e e
[CemoRtrode v csesensonois 0 s sokcaron 4199 [o

[SE e ——
[remry

Updating http://172.22.11.2:1250 CTRE Devices. ‘Server Version: 0.7.3.0 (Dec 22 2018,00:11:40)

_images/image16.jpg

_images/oversampling-averaging.png
Oversample

Accumulator

Average Channel0,1 only

-

>
Avg Acc

Al Out

_images/tuner-2.png
& Phoenix Tuner Version (0.7.3.0) - o x

Options Tools Windows Selected CAN Device: -

[Phoenix Tuner provides field-upgrade, configuration, and self-test for CTRE CAN Devices. This software communicates to the Phoenix Diagnostics Server (ported from the 2016
|roboRIO web-based config).
[You must first install Diagnostic Server into the roboRIO - this only needs to be done once after RIO imaging.

[Toinstall, connect a RoboRIO to the PC using USB, and select 172.22.11.2 # RoboRIO Over USB in the server address drop down below. Then press Install Phoenix Library/Diagnostics.
[This will install the Phoenix Diagnostics server (all Ianguages) and Phoenix API library (for LabVIEW teams|

[You may enter your team number or roboRIO IP address for server address, this is necessary to connect wirelessly to your robot. Tuner will react automatically when you change the

<] [s250 = efatrrt

InstalUninstal

Lost Comm, trying to reconnect to http://172.22.11.2

1250 Server Version: Unknown

_images/image0.jpg
2| omseac

_images/om5p-ac-radio-modification-8.png

_images/image-the-classmate.png
e lcome to the FIRST FRC Classma river S
Peicons o the PIACT FRC Clasemstims Station restoration procedu

Prepare and Restore the Classmate image o
Erspers and Rescore the CL ate image onto vour internal drive
Exit and Reboot

Exit and Shutdown

vpe 1 — 4. then press ENTER:

X:\windows \system32\cmd.exe - startnet.cmd

\le lcome to the FIRST FRC Classmate Driver Station restoration
Please select from the followin

Prepare and Restore the Classmate image onto your internal
Exit to Command Prompt

Exit and Reboot

Exit and Shutdown

— 4. then press ENTER: 1

he following DEVELOPMENT image has been found

E:\E12_DEV_2015_281014.win
Is this the correct image?

ype ¥ or N and press ENTER:

_images/om5p-ac-radio-modification-7.png

_images/talon-motor-controller.png

_images/image1.jpg
I

N

S |

_images/install-2a.png
Select components to nstal:

_images/prep-rc-3.png
Team# 217 F

i 12.11V Warning 44002 Ping Results: link-bad, DS radio(.4)-bad, robot radio(.1)-bad, "
roboRI0(.2)-bad, FMS-bad FRC: Driver Station ping status has changed.

Communications mm Driver Station

Robot Code mm

Joysticks nning. Driver Station

Teleoperated

Warning 44000 DS Disable Driver Station
Disabled Warning 44000 DS Disable Driver Station 9

_images/prep-rc-2.png
n 19.0a11
View Log File

Team # 217 View Console

t[1346V : Clear

Communications 3 Errors
Robot Code +Warnings

Joysticks m
Window = [

Teleoperated Warning 44000
TeamStation Redl W Disabled L Warning 44000

ElapsedTime 0:00.0

~a- PCBattery
PCCPU% 1

_images/install-4.png
& CTRE Phoenix Framework Setup

Completing CTRE Phoenix
Framework Setup

(CTRE Phoenix Framework has been instaled on your
computer.

Cick Finish to cose Setup.

[l Relesse Noted

FRC Teams should use Phoerix Tuner to Configure their CAN Hardware.

Phoenix Tuner

Documentation

<gack

Cancel

_images/prep-rc-5.png
O 17222112 System Configuratic X |

€ > C O Notsscure | 17222:112/#/SystemConfig

172.22.11.2: System Configuration

S ——
‘Settings.
p— e
s inara e
SR,
- vt o
— b
o o
Jun N,
Pl
o i T T .47 575408
o i
i a2 1 1050 350 S T
o e
i 09
o R
oot p—

VISA Resource Name system

_images/install-3.png
& CTRE Phoenix Framework Setup. -

Installing P
Plesse wat e CTRE Phoen Framencrk s beng ratled &

Delte fe:C:sersorien sDstaVocallemp st7915.tmp

Victor SPX & Talon SRX

IS
V=X

_images/prep-rc-4.png
Team # 217

B 1346V

Communications mm

Robot Code mm
Joysticks

Teleoperated
Disabled

ERROR -8007 Error occurred at Talon SRX Open VI: libCTRE_PhoenixCCl.so not found.
Possible reason(s):

CTRE Phoenix: Have you installed Phoenix on the roboRIO using Tuner?

_images/ip-address-parts.png
An IPv4 address (dotted-decimal notation)

172 . 16 .254 . 1
A4 04 A4 4
10101100.00010000.11111110..00000001

TR
One byte=Eight bits

T
Thirty-two bits (4 x 8), or 4 bytes

_images/prep-rc-7.png
ction=getv

[6 © Notsecure | 172.22.11.2

"GeneralReturn”: {
"Action": "getversion",
"Error”: @,
"ErrorMessage”: "CTRE_DI_OKAY",
"ID": e,
“Model™: "*

3

SearchDirectory”: "/var/volatile/tmp/ctre/",
"Version": "0.7.3.0 (Dec 22 2018,00:11:40)"

_images/installation-summary.png
Installing FRC Game Tools

Select Agree Review Perform

Installation complete!

All selected packages were successfully installed on your system.

Close

_images/prep-rc-6.png
[¢ © Notsecure | 17222.11.2:12

"DeviceArray™: [

1{

BootloaderRev”: "0.2",
‘Currentvers”: "4.

=
17103872,
“Nov 13, 2017",

‘Victor SPX"

“Victor © - Left",
Softstatus”: "Running Application.
UnigID"
“Vendor"

BootloaderRev”: "2.6"
‘Currentvers”: "4,
: 33880073,
HarduareRev": 1.4",

I07: 33881088,

“ManDate": "Nov 3, 2014",

“Model": “Talon SRX",

“Name”: "Talon © - Right”,
Softstatus”: "Running Application.
UniqID": 4,

‘CurrentVers":
DynID": 33880071,
HarduareRev": "1.
ID": 33881089,
iov 3, 2014",

“Talon SRX",

- Left”,
“"Running Application.

‘Cross The Road Electronics™

BootloaderRev”:
‘CurrentVers": "4.0",
50657290,
HarduareRev": "1.
: 50658304,

‘ManDate”: "Sept 3, 2017",

_images/keyboard-navigation-with-the-roborio.png
x prssd s ting
57
v

i e s shonn e e o Cs oo 1 o Dnshbord st nthe Db Pt

_images/prepare-drive.png

_images/jagLight.png
LED State Module Status LEDS@te | Module Status.

Normal Operating Conditions Calibration Conditions

Sold Yellow Neutral (speed set t0.0) Fast Flashing Red | Calibration mode active

Fast Flashing Green | Forward and Green

Fast Flashing Red__| Reverse Fast Flashing Red | Callbration mode failure

and Yellow

Sold Green Full-speed forward

Solid Fod Fulrspesd roverse Siow Flasing Groen | Calbraon mode success

Fault Conditions,

or=pore Slow Flashing Red | Callbration mode reset

Siow Flashing Yelow [Loss of serv or etwor and Green o faciory default setings
in success

Fast Flashing Yellow | Invalid CAN 1D SheConis

Slow Flashing Red | Voltage, Temperature, or Slow Flashing Green | Waiting in CAN Assignment
Limit Switch fault condition mode

Slow Flashing Red
and Yellow

Current fault condition

_images/prep-rc-8.png
Team # 1718

B 238y

Communications mm
Robot Code mm
Joysticks

Teleoperated
Disabled

ERROR 13 Call Library Function Node in CTRE_Phoenix_MotorControl_set.
5580001->Teleop.vi->Robot Main.viLabVIEW: (Hex 0xD) Failed to load

dynamic library because of missing external symbols or dependencies, or
because of an invalid file format.

5580001->Teleop, LabVIEW: (Hex 0xD) Failed to e
dynamic library because of missing external symbols or dependencies, or
because of an invalid file format.

_images/labview-benchtop-run-live.png
Mainy [AEIEIRR) =y =

Fie Edit View Project Operate Tools Window

2] ©[11] 5 Aoptcaton ol [2]

w Project Operate Tools Window Help

s

e | s

58] Project 2015 Robot Project vproj
§ My Computer
& Target (roboRIO-40 Jocal)

[Support Code

) Team Code

()

Image Size E

& preraE I

. Build Specifications

_images/programming-radios-for-fms-offseason-1.png
On or Powering up
Powering up

Link Up
Traffic present

Bridge Mode, unlinked
Bridge Mode, Linked
AP Mode
Unprogrammed

‘WiFilight only works after radio
has been power cycled.

Eth
Link
fi A -~ Power
. =
_.ﬁ

_images/labview-benchtop-deploy-startup.png
2015 Robot Pr -

File Edit View Project Operate Tools Window Help

oS % 0o X]Ew[E-ea

tems | Files

58] Project 2015 Robot Projectvproj
§ My Computer
£ 18 roboRIO (106.23.2)

T Support Code

Duplicate
Explore
Clean

Remove from Project

Help...
Properties

_images/problem-1.png

_images/labview-create-project.png
I Create New FRC Robot Project [=

Selectproject name,folder, and P adcfress &) Project Robot Proectivpre)
Project name. B My Computer
2016 Robort Project & B, R roboRI0 Target 172.2211.2)
@
Projec older
C:\Users\koconnor\ Documents\ LabVIEW Data\ | () =
i
=
i
=
- Robot Global Dstai
s Teleop.
L Tets
s} Vision Processingai
L R
% g
& B

< Back Nett>

_images/pneumatics-control-module.png

_images/image6.jpg

_images/power-distribution-panel.png
IM nﬂuuuu .
==
=00
=0 |

B0

_images/image5.png
Create a new repository

A repository contains all project files, indluding the revision history. Already have a project repository elsewhere?
Import a repository.

Owner Repository name *
5% ExampleUser9007 ~ / ExampleRepo v

Great repository names are short and memorable. Need inspiration? How about reimagined-palm-tree?

Description (optional)

® [] Public

Anyone can see this repository. You choose who can commit,

O O, Private
You choose who can see and commit to this repository.

[Initialize this repository with a README
“This willlet you immediately clone the repository to your computer. Skip this step if you're importing an edsting repository.

Add gitignore: None ~ Add alicense: None v | @

_images/potentiometer.jpg

_images/image7.jpg

_images/preCheckBreaker.png

_images/image6.png
Quick setup — if you've done this kind of thing before

@ISetupinDesktop or | HTTPS | SsH https://github.con/ExampleUsersee?/ExanpleRepo. git

Get started by creating a new file or uploading an existing file. We recommend every repository include a README, LICENSE, and .gitignore.

or create a new repository on the command line

echo "% ExampleRepo" »> READHE.nd B
gt init

g1t add ReAOME.md

git comit -n “first comit®

git renote add origin https: //github. con/ExampleUserso0?/ExampleRepo. git

81 push -u orlgin master

..or push an existing repository from the command line

git remote add origin https://github. con/ExanpleUser9007/ExanpleRepo. git
git push -u origin master

_..or import code from another repository
You can iniialize this repository with code from a Subversion, Mercurial, or TFS project.

Import code

_images/preCheckBatt.png

_images/image8.jpg

_images/preCheckFuse.png
2.4. Blade Fuse

Be sure to place the 20A fuse (vellow) on the left and the 10A fuse (red) on the right

Also take care to ensure fuses are fully seated into the fuse holders. The fuses
should descend at least as far as the figure below (different brand fuses have different lead
lengths). It should be nearly impossible to remove the fuse with bare hands (without the use
of pliers). If this is not properly done, the robotradio may exhibit intermittent connectivity
issues.

_images/image7.png
\Users\daltz\Docunents\Example Folder>

_images/preCheckConnecc.png

_images/imaging-progress.png
B FRC roboRlO Imaging

2112
FRC_10boRIO_2018_v16

3,000

_images/preCheckTools.png

_images/imaging-complete.png
“The roboRIO image was successfully
updated. The IP address of the roboRIO.
device is 17222.11.2. The hostname is

r0boRIO-1-FRC.
You must deploy code to use the robot.

_images/preCheckPDP.png
Just by removing the battery cover, often you can confirm the washer.

_images/install-1.png
& CTRE Phoenix Framework Setup -

Welcome to CTRE Phoenix Framework Setup

Setup wil guide you through the nstalation of CTRE Phoenix Framework.

Itis recommended that you dose al other appications before starting Setup. This il make it possible to update relevant system
fles without having to reboot your computer.

Clck Next to contine.

_images/imaging-the-roborio.png
00:80:2F:30: 458
2112

FRC_1oboRI0_2015_v16

3000

_images/preCheckTug.png

_images/image5.jpg

_images/sensor-11.png
& Phoenix Tuner Version (0.76.0) - o x
Options Tools Windows Help | Selected Device: Talon0- Right 5

Control X

non-FRC Robot Enable
Robot Disabled

Position (units) Motor output (relative %)
Current (Amps) Velocity (units per 100ms)

Motor Controller Control / Testing Press to zoom Y with Mouse-wheel

11000000
700000

NOTE: Use ENTER or SPACEBAR to quickly zero
Control Disabled

‘Server Version:
0.7.5.0 (Dec 30 2018,16:16:59)

Updating http://172.22.11.2:1250 CTRE Devices... ok

_images/errors-during-imaging-process.png
An error has occurred in processing the image

Ei\EOS_DRV_2013_251112 win

Your cptions are to try

1. Using same image on the existing USB Flash drive

2. Reload the same inage onto the USE Flash drive using RHPrepUSE

3. Reload the same inage onte a new USE Flash drive using RUPreplSB

4. Download a mew image from the FTP site

See the 2013 FRC Classmate Inage Restoration Guide

_images/new-vi.jpg
File Edit View Project Operate Tools Window Help

[heSe |« DO X||ER|R-& a

tems | Files

=l Project: Command and Control Project vproj
My Computer
= I, Target (roboRIO-1337-FRC.local)
@ data
(@ Drive
= (@ Commands
=), Drive for Time.wvi
) Drive Immediate.vi
Read Drive Operation.vi
Reserve Drive.vi
Stop Drivingvi

==

emplate for Drive Immediate.vit
[Template for Drive with Duration vit
Drive for Distance.vi

= (@ Implementation

Infrastructure

Drive Controllervi

Drive Operations.ctl

Drive Published Globals.vi

[B Drive Setpoints.ctl

[Score Macrowi

G@ Framework

@ Support Code

@@ Vision

Robot Main.vi

Teleop.vi

Autonomous.vi

Testvi

=
=
) SubSystems.i
k-
33

LYC T

prme

Dependencies
Build Specifications

emplate for Drive Immediate with Deadband.vit

Find »

Open
Explore...
Show in Files View Ctrl+E

Print...

Run

Save
Save As...

Deploy
Arrange By »
Rename... F2

Replace with..

Properties

_images/servo-power-module.png

_images/new-subsystem.jpg
File Edit View Project Operate

Tools Window Help

e xboxsw - ¢al

ellvwa|al

tems | Files |

]

EEEEEeReRE

Sim Support Files

Build Specifications

data
Drive

Framework
Support Code
Vision

Robot Maini
Teleopui
Autonemous.vi
Testvi

Sub Systems.vi
Dependencies
Build Specifications

= [Project: 2016 Robot Project. hvproj
= B My Computer

~ @ Robot Simulation Readme.html
%' Dependencies

Add

Connect.
Disconnect
Utilities

Deploy
Deploy All

Amange By
Expand All
Collapse All

Remove from Project

Help...
Properties

Find Project Items..

F2

Rename...

v
Virtual Folder

Control
Library
Variable

1O Server
Class

Web Service

_images/sensor-20.png
& Phoenix Tuner Version (0.7.6.0)

Options Tools Windows Help | Selected Device: Talon 0- Right

Import Table (json) Expc

Updating http://172.22.11.2:1250 CTRE Devices..

_images/eventlist.png
236:07.328 PM
23610441 PM

23701461 PM
23847856 PM

238:49.356 PM

238:53.460 PM

2:38:50.46 PM

2:38:55.468 PM

23859278 PM

Event Message Texd.
WARNING <Code> 44007 occurred at FRC_NetworkCommunicatior
Warning <Code> 44001 occurred at No Change to Network Configuration: "Local Area Connection” <noNId
FRC: Time since robot boot.

Driver Station

<time>2/6/2013 2:3607 PM<unique>

ERROR <Code> 44009 occurred at Driver Station

<time>2/6/2013 2:3606 PM<unique#>2

FRC: A joystick was disconnected while the robot was enabled.

Warning <Code> 44006 occurred at Driver Station

<time>2/6/2013 2:36:06 PM<unique#>1

FRC: Custom 1/0 is not enabled or is not connected to the driver station.

FMS Connected: FMS Light - 0, Field Time: 13/02/06 14:36:14

WARNING <Code> 44008 occurred at FRC_NetworkCommunications <radioLostEvents> 173.563 <raioSes
FRC: Robot radio detection times.

Watchdog Expiration: System 1, User 0

Warning <Code> 44004 occurred at Driver Station

<time>2/6/2013 2:3847 PM<unique#>4

FRC: The Driver Station has lost communication with the robot.

Warning <Code> 44002 occurred at Ping Results: link-GOOD, DS radio(4)-GOOD, robot radil.
<time>2/6/2013 2:3849 PM<unique#>S

FRC: Driver Station ping status has changed,

WARNING <Code> 44007 occurred at FRC_NetworkCommunications <secondsSinceReboot> 567369
FRC: Time since robot boot.

Warning <Code> 44004 occurred at Driver Station

<time>2/6/2013 2:38:53 PM<unique#>6

FRC: The Driver Station has lost communication with the robot.

Warning <Code> 44002 occurred at Ping Results: link-GOOD, DS radio(4)-GOOD, robot radiol.
<time>2/6/2013 2:38:55 PM<unique#>]

FRC: Driver Station ping status has changed,

WARNING <Code> 44008 occurred at FRC_NetworkCommunications <radioLostEvents> 339,065 <raioSes|
FRC: Robot radio detection times.

WARNING <Code> 44007 necurred at FRC NetworkCommunications <secondsSinceRehont> 593.367

)-GOOD,

_images/ni-activation-wizard-3.png
NI Licensing Wizard

Activation Results

Vision Development Module 2019 Runtime

_images/set-bootloader-option.png
File Edt Drive Bootloaders Settings Help.
DRIVE 1USB DISK (Removable) 7.4616iB

2Voume Label

e

T Ho user prompts
mage Teoks
@ VP2 PENistaWin? bootable BODTHGR] (CC4) -
© MSDOS boolsble 10.5YS] (003 snd CCADOSUFD)
© XP/BSHPE boolable NTLOR)

 FREEDDS boolable [KERNELSYS]
€ SYSLINUX bostable [LDLINUX VS + SYSLINUX.CFG)

Help (F1)

‘Emutor F11)

Erctome

[ETT— -
RBetresh (FS)

Testusing QENU

orive fo

4 Flesystem and Overrides

™ Bootas FOD (& noMBR)
™ Boot 25 2P (& wih MER)
€ FATR2 [Boot a2 HOD (C 2PTHS)

™ Forceuse of LBA cals
CNIS [w2 i possitle

[NOACT ek s bax f you do not

© raTIE {want the drive to be bootable.

[5 Copy OS flos ater Format [~ BartE > Drive.

Instal grubddos

[Erer o Desoption

- wrrio | FOTWS Sp3 110510 perttn, formstand male botab a drive.

_images/ethernetcableissue.png
033042PM 033L00PM 033L20PM 033L40PM (33200PM 033220PM (33240PM 033302PM

0206713 02006113 02/06/13 0210613 0200613 02006113 0200613 0200613
33057799 PM _ Watchdog Expiration: System 5, User 0
33138800 PM | Warning <Code> 44004 occurred at Driver Station

<time>2/6/2013 33138 PM<unique?>10
FRC: The Drver Station has lost communication with the robot.

33139801 PM | Warning <Code> 44002 occurred at Ping Results: ink-GOOD, DS radio()-GOOD, robot radio(1)-GOOD, cRIO(2)-bad,
<time>2/6/2013 33139 PM<unique®>11
FRC: Drver Station ping status hes changed.

33208449 PM | WARNING <Code> 44007 occurred at FRC_Network=Communications <secondsSinceReboot> 1809.393
FRC: Time since robot boat.

3322399 PM | WARNING <Code> 44008 occurred at FRC_NetworkCommunications <radioLostEvents> 24.505,1492.752 <radioSeenEvents> 0000260086
FRC: Robot radio detection times.

rchdog Expiration: System 7, User 0

332:50,

8PM

_images/ni-activation-wizard-2.png
NI Licensing Wizard
7]

A valid license for the following software product(s) was not found for your acc
Enter serial numbers to activate SeranNnmber

Vision Development Module 2019 Runtime XXXXXXXXX

Enter Activation Co

_images/servoLight.png
MOUNTING HOLE

STATUS LEDS

#6 SCREW (1 PER CHANNEL)
HIGH-POWER SERVO PWM
6V DC OUTPUT INPUT
(TO SERVOS) (FROM roboRI0)
6V POWER
- INTEGRATED
Lo] DC-DC
CONVERTER
- OVER-CURRENT
SHUTDOWN
%+
- ESD PROTECTION
=y
12V POWER
INPUT MOUNTING HOLE
(FROM PDP) #6 SCREW
STATUS LEDs

Each channel has a corresponding status LED that will
indicate the sensed state of the connected PWM signal.
The table below describes each state's corresponding

LED pattern.
State Pattern
No Signal Blinking Amber
Left/Reverse Signal Solid Red
Center/Neutral Signal | Solid Amber
Right/Forward Signal | Solid Green

_images/extract-iso.png
Name

~ Today (2)

721900-x64

I gametools

~ Yesterday (1)

Date modified Type Size

12/31/2019 549 PM Application 1414K8
12/31/2019 6:00 PM File folder

2019-09-05

2alpha

o0~ 015-02-21]

)

5] ni-frc-2020-game-tools_19.0.0_offline

850 MB

o8

Mount

Burn disc image
7-Zip

CRCSHA

Share.

Open with,

Give access to

Restore previous versions
Send to

Cut
Copy

Create shortcut
Delete

Rename

Properties

v

12/30/2019 9:10 PM Disc Image File 870910 KB‘ _
01

DBUG : Large Pages

Open archive
Open archive >
Exract files.

Extract Here

Extract to "ni-frc-2020-game-tools_19.0.0_offline\"

Test archive

Add to archive.

Compress and email,

Add to "ni-frc-2020-game-tools_19.0.0_offline.so.7z"

Compress to *ni-frc-2020-game-tools_19.0.0_offlineso.7z" and email

Add to *ni-frc-2020-game-tools_19.0.0_offline.sozip"

Compress to "ni-frc-2020-game-tools_19.0.0_offline.sozip" and email

_images/ni-activation-wizard.png
B N1 User Account

NI User Account

Log in to continue

Email

Password Forgot password?

LOGIN

Create account >

_images/set-partition-size.png
Fie Edt Drive Bootloaders Settings Help
DRIVE 1 USB DISK_(Removable) 7.461Gi

Refresn °5)

Heb 1)

2Bootiader Optons Test using GEUU
 WInPEV2AWinPEv3Vista/Win? bootable [BODTMGR] (CC4) Emuistor (F11)

" MS-DOS bootable [10.5YS] (CC3 and CCADOSUFD)
€ XP/BaAPE bootabe NTLOR] o
" FREEDOS bootable [KERNEL.5YS]

© SYSLINUX bootable [LDLINUX SYS + SYSLINUX CFG]

Drve pfo

4 Flesystem and Overres. st grubidos
™ Boot as DD (& no MBR)

I~ BootasZP (& with MBR) nstat sysinux
CFATR2 [BootasHDD (C: 2PTNS) —

© FaTis

I Farce use of LBA cals

CNTES [~ Use gahriec f possble

[5 Copy OS fles ater Format I~ BartPE > Dive.

[C\Users\ames\Deskiop\Test

Folows steps 1 10 6 o parttion, format and make bootable a drive. _
e

Choose FoderrFie

_images/exe.png
[= | CTRE Phoenix Fromework Windows v5.11.1.0

Home Share View
R

1A O Neme Dutemodfied | Type Sie

£ & CTRE Phoenix Frameworkv5.11.10.exe 12/24/2018 410PM Application 97,2968

_images/ni-activation-wizard-4.png
To register your products, visit ni.com/info and enter the info code 'register’.

By registering your products you will receive

« Convenient automatic updates
« Easier access to technical support
« Exclusive access to online training

_images/set-no-app.png
‘Startup Settings

L Force safe Mode

(] Enable Console Out

|| Disable FPGA Startup App.
[¥| Enable Secure Shell Server (sshd)

(] LabVIEW Project Access.

_images/edit-items.jpg
File Edit View Project Operate Tools Window Help

[Type Def. |

~ |[15pt Applicat] « A, [2

Trive
Ops.
o

Enum

} Reserve

¥

Visible Items 4

Change to Indicator
Change to Array
Description and Tip.

Command and Contral Project.vproj

Replace »
Dats Operations »
Advanced »
Representation »
Display Format.

Select Item »

Add Item After
Add Iterm Before
Remove Item

Disable Item

Properties

_images/network-internet.png
@ System and Security
Review your computer's status

Back up your computer

Find and fix problems

Choose homegroup and sharing options

" Hardware and Sound
View devices and printers
Add a device
Connectto a projector
‘Adjust commanly used mobility settings

Programs
k Uninstall 2 program

Get programs

%
9

@

User Accounts
@ Change accounttype

Appearance and Personalization
Change the theme

Change desktop background
Adjustscreen reslution

Clock, Language, and Region
Change keyboards orcther nput methods
Ease of Access.

Let Windows suggest sttings
Optimize visual display

_images/select-filesystem.png
File Edt Drive Bootloaders Settings Help.

DRIVE 1USB DISK. (Removable) 74616 [Enoicn

m e

1 Parttion Sze (S) 2 Voums Label

3 Bootoader Optons- T Testvsing GEHU
@ WnPE2IRPEY3NistaWin? bootable BODTHGR] (CC4) - Emuator (F11)
© MSDOS boolsble 10.5YS] (003 snd CCADOSUFD)
© XP/BSHPE boolable NTLOR)
€ FREEDDS bostable KERNEL SYS)
LINUXSTS + SYSUNUX CFG)

I Set partion as non-bostable:
I Mo user promsts

Heb (1)

Eectome

orive fo

e | N
b | s

I~ Boot s 2P (&: with MBR]

I~ Boot as HDD (C: 2PTNS)

I~ Force use of LBA calls

I~ Use 64hd/32sec if possible.

@ WiFs

[5 Copy OS flos ater Format [~ BartE > Drive.

[Erer o Desoption

o wrrio | FOTWS Sp3 110510 perttn, formstand male botab a drive.

_images/ds-versions.png
@) FRC Driver Station - Ver

Communications €'
EnetLink
Robot Radio

Robot (172.2211.2)
FMS
Enet 169.254.162.92
wifi

*UsB
Firewall(Dom, Pub, Prv)

Versions & Info
DS: 19.0a11

RIO: FRC_roboRI0_2015_19
Lib: Java 2018.1.1 beta-4

Pigeon: 40
PCM: 165
PDP: 120

Reboot roboRIO
Restart Robot Code.

Team # 217

B 186V

Communications mm
Robot Code mm
Joysticks

Teleoperated
Disabled

*

ERROR ~44019 FRC: The mDNS service is slow to
respond. Check firewall settings. Driver Station

_images/network-configuration.png
172.22.11.2: Network Configuration

E -
I Ethernet Adapter eth0.
Settings
MAC Address o0: 30:
Configure 1Pva Address DHCP or Link Local -
TPva Address 0.0.0.0
‘Subnet Mask 0.0.0.0
Gateway. 0.0.0.0
DNS Server 0.0.0.0
Current Link Speed 10Mbit/Half Duplex
Preferred Link Speed Autonegotiate -
Ethernet Adapter usb0
Settings
MAC Address

Configure 1Pva Address DHCP Only

1pv4 Address 17222112
Subnet Mask 255.255.255.248
Gateway 0.0.00

ONS Server 0.0.00

Current Link Speed Autonegotiate

Preferred Link Speed Autonegotiate.

_images/select-bridge-model-mode.png
£ FRC Radio Configuration Utiity

File Tools Help

Team Number:

Robot Name:

WPA Key:

Radio: |OpenMesh

To program your wireless bridge:
1) Connect power and Ethernet to the wireless bridge.

2) Make sure to use the Ethernet port shown above.

3) Wait for the Power light to turn and stay solid.

4) Enter your team number, and a WPA key (optional), above
5) Press "Configure”, the process should take 15-60 seconds

Mode: |2.4GHz Access Point (§))) |

Firewall: U
@ BW Limit
Load Firmware |

If asked to reset your wireless bridge:
1) If Event WPA Kiosk: Follow on-screen prompts.
1) If Radio Config Utility: Select OpenMesh
2) Unplug power from the radio
3) Press the "Load Firmware” buiton.
4) Follow the on-screen prompts.

_images/encoder-modules.png
Quadrature
Decoder(x8)

Up/Down
Counter(x8)

GPIO

Rising/Falling
Interrupt (8x)

Al

_images/new-subsystem-diogram.jpg
¥ Voice Subsystem Controllervi Block Diagram on 2016 Robot Project vproj/Target.

File Edit View Project Operate Tools Window Help
[@n] [wa| e .+ [15t Application Fot |~ |35~ | e | (65~ [al]

[Coop: carries out operation using setpoints, and checks notifier to determine what to do next. Use timed loop if low timing jtter i key.]

“Successful’, "Aborted”]

e —] i [S %17, D % Current

|doesn't need to loop. . b
Default Command it doesn't get another
|Cmd within 100ms, abort Setpoint
Durstio

_images/select-options.png
£ FRC Radio Configuration Utiity

File Tools Help

Team Number: Robot Name:
WPA Key: .
Radio: |OpenMesh v

Mode: (2.4GHz Access Point |

To program your wireless bridge: If asked to reset your wireless bridge:
1) Connect power and Ethernet to the wireless bridge. 1) If Event WPA Kiosk: Follow on-screen prompts.

2) Make sure to use the Ethernet port shown above. 1) If Radio Config Utility: Select OpenMesh

3) Wait for the Power light to turn and stay solid. 2) Unplug power from the radio

4) Enter your team number, and a WPA key (optional), above 3) Press the "Load Firmware” buiton.

5)Press "Configure” the process should take 15-60 seconds 4)Follow the on-screen prompts.

_images/eject-drive.png
File Edit Drive BootLoaders Settings Help
DRIVE 1USB DISK (Removable) 7.4616iB
DRIVE 1 5CiB Uss DIS:

1 Partton Size (MB) 2 Volume Label
I Set partion as non-bootable
|
™" o user prompts
3 Bootiader Optons mage Tools
& WinPEV2/WInPEV3Nista/Win] bostabls [BOOTMGR] (CC4)
€ M5:DOS bootable 0.5Y5] (EC3 and CCADOSUFD)
€ XP/BaitPE bootable INTLDR]
" FREEDOS bootable [KERNELSYS]
€ SYSLINUX boatable [LDLINUX.5YS + SYSLINUX.CFG]

4 Filesystem and Overrides.
[NOACT - Tick s box i you do not

™ BootasFOD (moMBR) | (Lt GO e
-

FATIE 1 oot as 2P ac with MER)
CORATR T Bootas HOD [C: 2PTHS)

I~ Force use of LBA cals

CNTFS 1= Lo 6dhe/a2sec posse

[Copy OS fles after Format [~ BartPE > Drive.

[ExseranesBeskioptTes

Follows steps 110 6 to partton, format and make bootable a drive.
Choose FolderfFie parten.

_images/neutral-deadband-strategy.png
100

100

Talon FX Neutral Deadband Strategies

amContinuous ==Simple —None

_images/select-network-connection.png
Network Interfaces ()

Please selecta networkinterface using the drop down box below.
Ifno network interfaces are listed, connectthe wireless bridge to the computer and click "Refresh”

e
| Cocal rea Comnecton
Wieless Network Connecton 2 @ o | [(cancel |

_images/encoding-direction1.png
Ghannel A

Channsl 8

Channel A

Channel 8

Low

Firstrising edge

e

HiGH]
Low

Direction ——— >
HIGH]
Low |

Low] \

Firsrsing edge o

_images/encoding-direction.png
Ghannel A

Channsl 8

Channel A

Channel 8

Low

Firstrising edge

e

HiGH]
Low

Direction ——— >
HIGH]
Low |

Low] \

Firsrsing edge o

_images/new-subsystem-front-panel.jpg
File Edit View Project Operate Tools Window Help

[[@] /@[] [15pt Application Font |~ | [$o |[a~ [~ [eb~]

*| Search

saurce

2016 Robot Project.epro| /Tarézt <

Tip: It may be helpful to observe inputs and sensor values, |
[You may also want to display tuning or debugging controls.

1

_images/12.png
3 Button PressIvpro - Poject Explorer =~

Fie Edit View Project Operate Tools Window Help

[hSe | xDbOX||SRIER- ¢4

Ttems | Files

&) Project: Button Press.vproj
& W My Computer
-1, Terget roboRIO-1111 Jocal)
+ 1 [SuppeCed,
GG Team Code
|8 RobotMainy agq
$ % Dependencid

% BuildSpecifi_ Convert o Auto-populting Folder.

Convertto Library
Find ltems with No Callers
Items incorrectly claimed by a library

Find Project ltems.

Armange By
Expand All
Collapse All

Remove from Project
Rename.

Virtual Folder

Control
Library
Variable
VO Server
Class

Web Service

_images/2.png

_images/1.png

_images/11.png
Numeric

g0
Visible Trerns »

Soofen | Change tolndicatar

o Gt

Description and Tip

Find »
Replace b| Reference
Data Operations » | PropertyNode >
Bbvanced b iokeNod

P

_images/21.png

_images/1-a.png

_images/1-b.png

_images/mixing-static-dynamic.png
In the Pits
On the Field

10TEAM.XX

oHep oHep
10TEAMY 107EAM22

No Communic:
Between Networks!

10TEAM.XX

sutic
107EAM1S

_images/rslLight.png

_images/rs232-pinout.png
RS-232 Port

Figure 7 and Table 6 describe the RS-232 port pins and signals.

Figure 7. RS-232 Serial Port Pinout

[

Table 6. RS-232 Serial Port Signal Descriptions.

Signal Name Direction Description
™D Ouput | Serial transmit output with =5 V 1015 V signal
levels. Referto the ULART and RS-232 Lines
section for more information.
RXD Input Serial receive input with +15 V input voltage.

fange. Refer o the UART and RS-232 Lines
Section for mor information.

GND

Reference for digital lnes

_images/ds-status-pane.png
Teleoperated

@ Disabled

_images/mxp-pinout.png
Figure 4. MXP Pinout

o /0100

oo

[elarfes]zr[es[eafer[sa[e][ra v o [5 o]

[34[s2[o]2a[s 4[] o] [14 12 [10] e | | | 2

oo
iov
anov
anoa
X 1v0
anoa
xun
anoa
ond
anoa
g
anoa
srnasion
anoa

anoa
Dsoavioa
vas 921/ 51010

100

100

_images/running-the-program.png
|
3 Robot Main Front Panelon 2015 Robot Proje

2015 Robot Project vproj - Project Explorer =3 | =1 || 2%

File Edit View Project Operate Tools Window

@11 50t Apicstion Fof <, [2],
()

Fie Edit View Project Operate Tools Window Help

S %o [snlE-Eallz

Ttems | Files

el Project: 2015 Robot Projectvproj
§ My Computer
R, Target (roboRIO-40 Jocal)
) Support Code
) Team Code
' Dependencies
% Build Specifcations

TeleOperated @ Elapsed Time feunch
Autonomous
Practice e

o Communications
— PCCPU%

Robot Code
Joysticks
Window

No Robot
@ Team Station Rex Communication

_images/ds-setup.png
Team # 1

Practice Timing (s)

13.71V

Communications mm
Robot Code
Joysticks

No Robot
Code

_images/mount-iso.png
Date modified

Name Type Size
~ Today)
2020-game-tools [~ Disc Image File
I ni-frc-2020-game-tools = Mount Application 5503 KB

o8

Burn disc image
Share.

Open with,

Give access to

Restore previous versions
Send to

Cut
Copy

Create shortcut
Delete

Rename

Properties

_images/run-robot.png
rocpes(3) | Gapeitne 0:000 Tomy % pECCTEER - S -

= o o
o = e g [
* | e e = i
e 5 e |
- Window T) 3 s
@ e i o
e .

_images/ds-usb-tab.png
@) [usaoder ()

1

0 XBOX 360 For Windows (]

Axes Buttons POV
oLxaxs

v e

2t rigzer @

R Trgger

T Rumble

S:RVA

_images/network-and-sharing-center.png
toanetwork | View network computers and devices
‘Add wirless devietoth network

HomeGrouy
Q P

Choose homegroup and sharing options

Internet Options.
Change your homepage | Manage browser add-ons | Delete browsing history and cookies

_images/sd540Light.png
Output to Motor
: White
Green

Battery Input
+ve: Red

Ground: Bﬁd\

PWM Signal
Indicator LED

Indicator LED

Nominal: 12 V DC

Max: 18 V DC
60 amps continuous,
100 amps peak (2 secs)

Power LED

This LED will turn Red when Power is supplied.

Motor LED

This LED turns Red in Forward direction and Green in Reverse direction.

PWM Signal LED
This LED turns Red when no valid PWM signal is detected, and turns Green when valid PWM signal is detected.

_images/ds-usb-rearrange.png
0 Logitech Attack3
1 Logitech Extreme 3D
2 Gamepad F310 (Controlle

3 MadCatz GamePad (Cont]

_images/nat-diagram.png
00028

T

10002

T

10003
naT
100010 10001 ss68856

T

100055

T

100059

_images/scan-for-new-hardware.png
File Action View Help

e mHm 8

Scan for hardware changes

_images/measuring-bandwidth-usage-7.png
100000

0.

L5B21PM 15835PM 1

Last

106846674 Average

45 PM 1:5855PM 155905 PM 1:S915 PM 1

107,081487 Minimum

105335527 Maximum

108885124 Duration

_images/roborioreboot.png
[—

030103PM 030120PM 030140PM 030200PM 030220PM 030240PM 030300PM 030323PM
006713 020613 0063 020613 020613 00613 020613 0200613
30136869 PM | Warning <Code> 44004 occurred at Driver Station
<time>2/6/2013 301:36 PM< unique®>4
FRC: The Driver Station has lost communication vith the robat.
30137871 PM Warning <Code> 44002 occurred at Ping Results: link-GOOD, DS radiol4)-GOOD, robot radio(1)-GOOD,
<time>2/6/2013 301:37 PM<uniques>5.
C: Driver Station ping status has chang
Warning <Code> 44002 occurred at Ping Results: link-GOOD, DS radiof4)-GOOD, robot radio(1)-GOOD, <RIO(2)-GOOD, FMS-GOOD Driver Station
<time>2/6/2013 301:46 PM<uniques>6.
C: Driver Station ping status has changed.
30153689 PM Warning <Code> 44002 occurred at Ping Results: link-GOOD, DS radio(4)-GOOD, robot radio(1)-GOOD, cRIO(2)-bad, FMS-GOOD Driver Station
<time>2/6/2013 301:52 PM< unique>T
FRC: Drivr Station ping status has changed.
01554430 PM Warning <Code> 44002 occurred at Ping Results: link-GOOD, DS radio(4)-GOOD, robot radio(1)-G00D, cRIO(2)-GOOD, FMS-GOOD Driver Station
<time>2/6/2013 301:53 PM< unique=>8
FRC: Driver Station ping status has chang:
0202512 PM | WARNING < Code> 44007 occurred at FRC_NetworkCommunications <secondsSinceReboot> 3662
C: Time since robot boot.
ROR <Code> 44003 occurred st WPL Comeralssue HTTP Request with Authentication.vi> > WPLCameralssue Getvi>>WPL CameraGet Image Appe:
<time>2130:35 02/06/2013
FRC: Operation failed due to 2 communication failure with the camera.
30220151 PM Warning <Code> 44003 occurred at Driver Station
<time>2/6/2013 302:24 PM<uniques>9.
FRC: No robot code is cumrently running.

<RIO(2)-bad, FMS-GOOD Driver Station

301:47.281 PM

30224128 P

_images/measuring-bandwidth-usage-6.png
Performance Monitor Properties

General [Source [Data | Graeh | Appearance|
= Saolste

Tite:

Vertical as:
Show
] Vertical grid Vertica scale numbers
[FlHorizontal grid Time axislabels

O J [Coos] []

_images/roborio.png
w

_images/measuring-bandwidth-usage-9.png
] Capturing from Intel(R) 82579LM Gigabit Network Connection: \Device\NPF_{6ASC54A1-86A5-4A54-B¢
File Edt View Go Cepture Anabyze Statistics Telephony Tooks Intemels Help

g) Summary N QQ

Protocol Hierarchy

Seoed BEX

Fiter:

B Conversations presson... Clear

Souce | @ Endpoints fotocol Length_Inf
Packet Lengths.

_ e 10Graph

_images/robot-builder.png
FRC RobotBuilder

e B

This s the root of your robot tree. The robot tree is an organized representation of your robot that
displays the key components and can be used to generate skeleton code, wiring diagrams and more. [

Properties

Name

‘The name of your robot

— - - —
File Edt View Export Help
| i save Open Undo Redo Verify Java Wiiing Table C-++ Getting Started
Sibasiens S e Property Ve
i 0o stems Name tyRobot
L% [D IRt o —
x| M Team Number o
&) subsy 2 Java Project. :Users koconnor \Documents\FRC Robot Builder \TestRobot
Controllers e se Defoult Java Package
. e Java Pacage .S 0000
Operator Interface C++ Windriver Workspace :WindRiver workspace \SpikeTest
a0 Export Subsystems
C Export Commands
A Wiring File: Click to Select
What is it? i

_images/measuring-bandwidth-usage-8.png
S Interface List

Lve s o the capture itertaces
(couns ncoming packes)

@ start =

Choose an or more ntrfaces o capture fom,then Start

73 ot 82579LM Gigabit Network Connectio: \Device\NPF.(6ASC54A1-86A5-4A54-B60E-TCRSE2DTE214)

ig| Capture Options

St 3 capture with dessed opsons

_images/robot-battery.png

_images/microsoft-lifecam.png

_images/mecanumdrive.jpg

_images/robot-simulator.png
() o)))] o]) () o)

_images/startup-settings.png
‘Startup Settings

L Force safe Mode

[¥] Enable Console Out

[Disable RT Startup App

(] Disable FPGA Startup App.

[¥] Enable Secure Shell Server (sshd)

(] LabVIEW Project Access.

_images/frc-radio-configuration-utility.png
{55 FRC Radio Configuration Utii
File Tools

Team Number: [v]

WPA Key:
Radio:
Mode:

Robot Name:

Firewall: U

To program your wireless bridge:
1) Connect power and Ethernet to the wireless bridge.

2) Make sure to use the "802.3af" Ethernet port as shown above.
3) Wait for the Power light to turn and stay solid.

4) Enter your team number, and a WPA key (optional), above

5) Press "Configure”, the process should take 15-60 seconds

If asked to reset your wireless bridge:

1) Event WPA Kiosk Will reset automatically
2)Radio Config. Uilty: Select OMSP-AN as the radio.
3) Unplug power from the radio

4)Press the "Load Firmware” button.

5) Follow the on-screen prompts.

_images/om5p-ac-radio-modification-1.png

_images/step-2.jpg
Default Command

Subsystem Name
Drive

error in

_images/ogTalonLight.png
TR -
lﬁ f‘lo
g L

_images/step-1.jpg
Infrastructure pros, (€Y
= Drive Check for New Command.vi
/= Drive Command Helper.vi

= Drive Controller Initialization.vi

Drive Controller.vi

Drive oierations.dl

=
)

Duration Distance (feet)

0 0
Start Time (ms)

[Drive Setpoints.ctl
= score Macrowvi

& Drive Controller.vi Block Diagram on 2016 Robot Project

—

XXX.Ivproj/Target ‘2

@ Framework File Edit View Project Operate Tools Window Help
@ support Code = = =
@ vision | \g)@ wa|@ 7 | 18pt Application Font |~ |[$o~ [T~ | [0~ [#al|

= Robot Main.vi

LeftMotorinverted

[Loop: carries out operation using setpoints, and ct

RightMotorinverted [F} [Left and Right Motors]
SubSystem Data =) FEnabIe 'M
Ey 0]
 Test Mode On!
| paints | ly

_images/graphviz-21588c19e4b53c3a860231aaf2a6aa7b5fe507d8.png
Example Repo

A 4

Update File 1

Update File 2

Update File 3

_images/om5p-ac-radio-modification-2.png

_images/step-4.jpg
["Successful", "Aborted" 'F

L %.1f, R %.1f, D %f, Current
Dist %f 1 cmd

. =
Left Setpoint

Right Setpoint
Duration
Distance (feet)

_images/graphdisplay.png
Tip Time

“oznes

adio- D
Tip Time

_images/om5p-ac-radio-modification-10.png

_images/step-3.jpg
M "Drive for Time"

_images/i2c-pinout.png
12C Port

ure 6 and Table 5 describe the C portpins and signals.

Figure 6. 12C Port Pinout

ELEH

23v oA

Tt

Table 5. I2C Port Signal Descriptions

Signal Name Direction Description
GND) Reference for digital ines and +3.3 V power
ouput.
v Ouput__ | +33V power ouput
Input or Ouput_| FC lines with 33 V output, 3.3 V/
. S V-compatible input. Refe o the £°C Lines
DA Input or OUPIL | secion for more informaton.

_images/om5p-ac-radio-modification-4.png

_images/stop-driving-diogram.jpg
If loop needs to poll sensors or other

(next command to be sent.

Don't move motors while reserved [0] ¢

alues, use a timeout value. -1 waits for|

_images/hsv-models.png
HSL

=
=
=
I
193
wn

U Shst !

240

HSV

_images/om5p-ac-radio-modification-3.png

_images/step-5.jpg
(Update motors and update dashboard

IRobotDrive Motors

e

_images/identifyinglogs.png
:19:30.893PM | FMS Connected: Practice - 1, Field Time: 13/02/06 15:19:37

_images/om5p-ac-radio-modification-6.png

_images/system-configuration-tab.png
172.22.11.2: System Configuration

(1)
(=]

Hostname.

1P Address

DNS Name
Vendor

Model

Serial Number
Firmware Version
Operating System
Status.

System Start Time
Tmage Title

Image Version

Comments

Locale

VISA Resource Name.

Update Firmware

Startup Settings

roboRIO-1-FRC

0.0.0.0 (Ethernet)
172.22.11.2 (Ethernet)

National Instruments
roboRIO

03043849

6.0.011

NI Linux Real-Time ARM7-A 4.9.47-t37-ni-6.0.0f1

Running

Mon Nov 19 2018 14:16:34 GNT-0500 (Eastern Standard Time)
roboRIO Image

FRC_roboRIO_2019_v12

English
system

Force Safe Mode

Enable Console Out

Disable RT Startup App.

Disable FPGA Startup App

Enable Secure Shell Server (sshd)

_images/identifying-brownouts.png

_images/om5p-ac-radio-modification-5.png

_images/symptom.png
Deployment Status

Checking items for conflicts. This operation could take 2 wk
Preparing items for download. This operation could take a whil
Deploying NL FileType.viib

Deploying NI PackedLibraryLti

Deploying NL Vision_Development Moduleviib

Deploying L Vision_ Acquisition_Software.vib

Waiting for the target (Target) to respond.

Waiting for the target (Target) to respond.

Waiting for the target (Target) to respond.

Deployment Progress

lose on successful completion

_images/frc-driver-station.png
TeleOperated
Autonomous
Practice

Test

ElapsedTime 0:00.0

PCBattery
PCCPU%

Window 1 =1

Team Station Red1l <7

]

Communications =
Robot Code =
Joysticks =

No Robot
‘Communication

_images/normallog.png
Lo

o246dapm | 024730PM 024800PM 024830PM" 02:49:04PM
02/06/13 00613 020613 02106713 02/06/13

24613575 P WARNING <Code> 44007 occurred at FRC_NetworkCommunications <secondsSinceReboot> 1027648
Warning <Code> 44001 occurred at No Change to Network Configuration: "Local Area Connection” <noNIC
FRC: Time since robot boot,
Driver Station
<time>2/6/2013 2:46:13 PM<unique#>3
ERROR <Code> -44009 occurred at Driver Station
<time>2/6/2013 2:46:13 PM<unique#>2
FRC: A joystick was disconnected while the robot was enabled
Warning <Code> 44006 occurred at Driver Station
<time>2/6/2013 2:46:13 PM<unique#>1
FRC: Custom /0 is not enabled or is not connected to the driver station.
24613617 PM FMS Connected: FMS Light -0, Feld Time: 13/02/06 14:46:21
24616471 PM WARNING <Code> 44008 occurred at FRC_NetworkCommunications <raioLostEvents> 779,588 <raioSes
FRC: Robot radio detection times.

_images/start-config.png
£ FRC Radio Configuration Utiity -

File Tools Help

Robot Name:

Team Number:
WPA Key: Firewall: U
Radio: |OpenMesh

Mode: (2.4GHz Access Point |

To program your wireless bridge: If asked to reset your wireless bridge:
1) Connect power and Ethernet to the wireless bridge. 1) If Event WPA Kiosk: Follow on-screen prompts.

2) Make sure to use the Ethernet port shown above. 1) If Radio Config Utility: Select OpenMesh

3) Wait for the Power light to turn and stay solid. 2) Unplug power from the radio

4) Enter your team number, and a WPA key (optional), above 3) Press the "Load Firmware” buiton.

5) Press "Configure”, the process should take 15-60 seconds 4) Follow the on-screen prompts.

_images/fix-wireless-driver.png
Control Panel (3)

M Device Manager
&8 Update device df View and update your hardware's settings and dri

Documents (85)
(6] visionAcqReleaseNioteshtml
) Getting Strted with the 2014 FRC Control Sysem.docx

Getting Started with Microsoft Kinect for FRC.docx
Getting Started with the 2013 FRC Control System.docx

Microsoft Outlook (740)
P sceking MXP approvel
B Re: sceking MKP approval
[Re: sceking MKP approval

Files (146)

B nitgmiamsi
8 nirtgmimsi
B nitgmiamsi

D See moreresults

[Device Mansger <] [shutdown |+ |

_images/ni_update_enable.png
NI Update Service

NI Update Service checks for available updates each time you install new NI software. Would you like NI Update Service also to
check for updates periodically?

Note: If updates are available, you can choose whether to install or ignore them. Updates are never installed automatically.

Yes No

_images/spikeRelay2Light.png
Innovation First

SPIKE

Ey

Solenoid Function
0 0 GND | GND | Orange | Both Solenoids OFF (default)
1 0 +12v | GND | Green Solenoid connected to M+ is ON
0 1 GND | +12v | Red Solenoid connected to M- is ON
1 1 +12v | +12v [off Both Solenoids ON

Note:
1. The INPUT Fwd and Rev are defined as follows: 0 (Off) and 1 (On).

_images/frc-log-viewer.png
O nd e Time | vt it vty Alfo =
Diole o sTeie Cannec ficion focio. Dot
- Toptime B
- Lowpacker:
vorsoe 1%
10- cus M
sy —)
- rovct o [
g rocor e [
& osoie I
. osace I
i ostee I
=
-
©- ¢
0 vamgerner
i Time 13210615 .
FldTime 13121061 utsscle
il T 12181
Pl T 1 20- MatehLengeh
nnecied 3t 3150767 CASTPM 032200PM 03240PM DIBGOPM 03230PM 033M0PM 032400PM 032447PM
neted 1 mes s Gne v oeons mens e oens owwens

0 bok e — 301SAS PN T Sole - 14000 secon

oo E - [

_images/frc-labview-dashboard.png
Drive | Camera Basic Custom Test Commands Checklist = Variables

o 0

No Camera Selection

_images/offline-installer.png
Online installer

File Size
537MB

© Note: If you need to download individual versions or
patches, you can select fiom Individual Offine

Installers Offline Installer

_images/ni-package-install.png
NI Package Manager

Select Agree Review Perform

I 000090

Installing NI Package Manager Deployment Support

Installing NI Package Manager Deployment Support 19.0

Next

_images/snap-action-circuit-breaker.png

_images/smartdashboard.png
eeeee

..............

_images/faq-5.png

_images/ni_activation_finish.png
Go to vl com /register to register your products.

By registering your products you will receive
« Convenient automatic updates
« Easier access to technical support
« Exclusive access to online training

_images/spark-motor-controller.png

_images/faq-4.png
FDiszbied ~P]

[PercentOutput +]

Ly Velocity (Raw
Sencor Ut
per 100 ms)

_images/ni-package-license.png
NI Package Manager

Select Agree Review Perform

You must accept the license agreements below to proceed.

NATIONAL INSTRUMENTS SOFTWARE LICENSE AGREEMENT

=

CAREFULLY READ THIS SOFTWARE LICENSE AGREEMENT ("AGREEMENT"). BY DOWNLOADING
THE SOFTWARE AND/OR CLICKING THE APPLICABLE BUTTON TO COMPLETE THE INSTALLATION
PROCESS, YOU AGREE TO BE BOUND BY THE TERMS OF THIS AGREEMENT. IF YOU DO NOT
WISH TO BECOME A PARTY TO THIS AGREEMENT AND BE BOUND BY ITS TERMS AND
CONDITIONS, DO NOT INSTALL OR USE THE SOFTWARE, AND RETURN THE SOFTWARE (WITH ALL
ACCOMPANYING WRITTEN MATERIALS AND THEIR CONTAINERS) WITHIN THIRTY (30) DAYS OF
RECEIPT. ALL RETURNS TO NI WILL BE SUBJECT TO NI'S THEN-CURRENT RETURN POLICY. If you
are accepting these terms on behalf of an entity, you agree that you have authority to bind the entity to
these terms

The terms of this Agreement apply to the computer software provided with this Agreement, all updates or v

This license agreement applies to the following packages: NI Package Manager

@ accept the above license agreement.

O 1 do not accept the license agreement.

Next

_images/spark-max-motor-controller.png

_images/faq-LV-Error7.png
{8 FRC Driver Station - Version 20.0

Team# 1718 X
@ | TeleOperated Elapsed Time 0:00.0 - - ;‘: __________________________ S
Autonomous i 12.17V explorer to verify that the path is correct. n -
@ Practice =& PCBattery s e ERROR 7 Call Library Function Node in -
PCCPU% m Communications mm CTRE_Phoenix_MotorControl_Set.vi:5580001-
{:}. Test Robot Code mm

>Teleop.vi->Robot Main.viLabVIEW: (Hex 0x7) File

Joysticks not found. The file might be in a different location ¥
Window =3 [or deleted. Use the command prompt or the file
Disable Teleoperated explorer to verify that the path is correct. __
4 Team Station Red1l W Disabled e

_images/ni_activation_login.png
B N1 User Account

NI User Account

Log in to continue

Email

Password Forgot password?

LOGIN

Create account >

_images/spi-pinout.png
SPI Port

Figure 13 and Table 12 describe the SPI port pins and signals.

Figure 13. SPI Port Pinout

Leso
Lest
Tsv

Tesz
Lesa

111

Table 12. SPI Port Signal Descrptions

Signal Name Direction Description
3av Ouput +33 V power output
sv Ouput +5V power output.
cs<0.3> Ouput | SPIwith 33 V output, 3.3 V/S Vecompatible.
input. Refer o the SP Lires section for more:
scLk Output information.
Mos! Ouput
MISO Input
GND - Reference for igital lines and +33 V and
+5.5V power output

_images/faq-6.png
[{Encbled_P]
[ercentOutput 7

——

_images/ni_activation_keys.png
A valid license for the following software product(s) was not found for your acc
Enter serial numbers to activate

LabVIEW 2019 Application Builder

LabVIEW 2019 Base Development System
LabVIEW 2019 Continuous Integration System
LabVIEW 2019 Database Connectivity Toolkit

LabVIEW 2019 Debug Deployment System

LabVIEW 2019 Full Development System

LabVIEW 2019 LabVIEW Robotics FRC Simulation
LabVIEW 2019 Professional Development System
LabVIEW 2019 Real-Time Debua Denlovment

Enter Activation Codes

Serial Number

Refresh

Activate

_images/sparkLight.png
2.6 STATUS LED

The SPARK can display information about its current mode of operation via its tri-colored STATUS LED. The STATUS
LED is located next to the motor output terminals and is labeled as STATUS with raised lettering on the SPARK housing.

Figure 2-6 shows the status codes associated with each operating state of the SPARK.

LED Status Code
Time Scale 1 second | 1 second
State Normal Operation
Full Forward

Proportional Forward

Brake

Neutral
Coast

Proportional Reverse

Full Reverse

Forward Limit Tripped . . .
Reverse Limit Tripped
m I Calibration
Calibration Mode |
Successful Calibration
Failed Calibration

Reset
Mode button held during power up | Mode button released

Reset to Factory Defaults S I e

_images/first_design.png
oW, THIS 1S A MOCH
BETTER DESIGN.
AT

DN Go! \lZ
we I \r}a‘i‘
% %
]

AT [
TN | A
1“'1;‘] I"ly?‘,‘] "1!'{\‘,\{'\&\ ‘,e““' |
1 I
o A

_images/ni_logo.png
NATIONAL
INSTRUMENTS"

_images/spikeRelay1Light.png
Motor Function

0 0 GND | GND | Orange | OFF / Brake Condition (default)
1 0 +12v | GND [Green | Motor rotates in one direction
0 1 GND | +12v_|Red Motor rotates in opposite direction
1 1 +12v | +12v [Off OFF / Brake Condition
Notes:

1. *Brake’ refers to the dynamic stopping of the motor due to the shorting of the motor inputs.
‘This condition is not optional when going to an off state.
2. The INPUT Fwd and Rev are defined as follows: 0 (Off) and 1 (On).

_images/finish.png

_images/ni_activation_success.png
NI Licensing Wizard

Activation Results

LabVIEW 2019 Application Builder

LabVIEW 2019 Base Development System
LabVIEW 2019 Continuous Integration System
LabVIEW 2019 Database Connectivity Toolkit

LabVIEW 2019 Debug Deployment System

LabVIEW 2019 Full Development System

LabVIEW 2019 LabVIEW Robotics FRC Simulation
LabVIEW 2019 Professional Development System
LabVIEW 2019 Real-Time Debug Deployment

LabVIEW 2019 Real-Time Module

Activation Successful

Activation Successful

Activation Successful

Activation Successful

Activation Successful

_images/spike-relay.png

_images/falcon-counter-clockwise.png

_images/ni-logo1.png
NATIONAL
INSTRUMENTS"

_images/setup.png

_images/falcon-clockwise.png

_images/ni-logo.png
NATIONAL
INSTRUMENTS"

_images/set-volume-label.png
File Edt Drive Bootloaders Settings Help.
DRIVE 1USB DISK (Removable) 7.4616iB

m

1 Parttion Sze (8)
e I Set partion as non-bostable:

T Ho user prompts

3 Bootoader Optons- trnge Took
@ WnPE2IRPEY3NistaWin? bootable BODTHGR] (CC4) -
© MSDOS boolsble 10.5YS] (003 snd CCADOSUFD)
© XP/BSHPE boolable NTLOR)
€ FREEDDS bostable KERNEL SYS)
€ SYSLINUX bootable (LDLINUX SYS + SYSLINUX CFG)

Help (F1)

‘Emutor F11)

Erctome

[ETT— -
RBetresh (FS)

Testusing QENU

orive fo

< Fesysemand overies
oA ek o yovdo et
™ Bost a5 FODUoMBR) | (Lanne v o b ot
I~ Boot s 2P (&: with MBR]
CRIR T B HOD(C 2T

™ Forceuse of LBA cals
CNIS [w2 i possitle

© raTIE

[5 Copy OS flos ater Format [~ BartE > Drive.

[Erer o Desoption

- wrrio | FOTWS Sp3 110510 perttn, formstand male botab a drive.

_images/faq-2.png
@) FRC Driver Station -

TeleOperated
Autonomous
Practice

Test

Disable

ElapsedTime 0:00.0

~& PCBattery m—
PCCPU% 1

Window

Team Station Red 1

Team# 1718
I 127av

Communications mm
Robot Code mm
Joysticks mm

Teleoperated
Disabled

*

ERROR 103 CTR: Firm Vers could not be retrieved. Use
‘Web-based config to check ID and firmware(CRF)
version. Talon SRX0

_images/ni-logo3.png
NATIONAL
INSTRUMENTS"

_images/faq-1.png
3 FRC

Driver Station -

TeleOperated
Autonomous
Practice

Test

Disable

ElapsedTime 0:00.0

~& PCBattery m—
PCCPU% mm

Window = =3

TeamStation Red1 W7

Team # 3539

B 2oov

Communications mm
Robot Code mm
Joysticks

Teleoperated
Disabled

firmuare(CRF). Talon SRX O, firm must be >= 3.0
ERROR -8 CTR: Firmware Too Old. Use Web-based
config o field upgrade your CTRE CAN device
firmware(CRF). Talon SRXO, firm must be >=3.0
ERROR -8 CTR: Firmware Too Old. Use Web-based
config o field upgrade your CTRE CAN device
firmware(CRF). Talon SRXO, firm must be >=3.0

_images/ni-logo2.png
NATIONAL
INSTRUMENTS

_images/shuffleboard.png

_images/faq-3.png
@) FRC Driver Station -

@| reteoperated fpsedtme 0:00.0 2M# 217w =

- Autonomous | meny | At
Practice &= PCBattery mm— . CTRE_Phoenix_MotorControl_RefNumRegistrySet.vi:4270007->Begin.vi->Robot =

Communications mm | Main.viLabVIEW: The data type of the variant is not compatible with the data
Test (REEES O RobotCode mm | type wired to the type input.
Joysticks mm | ERROR 91 Variant To Data in CTRE_Phoenix_MotorControl_GetDevRefData.vi: A
Window =1 [6330012 >CTRE_Phoenix_MotorControl_Follow.vi:850002->Begin.vi->Robot
Disable Teleoperated Main.viLabVIEW: The data type of the variant is not compatible with the data

Teamstation Red1 W Disabled type wired to the type input.

_images/3.png

_images/31.png

_images/22.png
Numeric

szt

Boolean

Nurneric

_images/23.png

_images/4.png

_images/41.png
Scheduling loop.

File Edit View Project Operate Tools Window

> [58] @11 15t Appiication Fof <, | 2

Enable Vision|

Som
msge See TR — B imager]

320,200

[Execute Teleop VIto react
Jto 2 new Driver Station packet|

[Based on the robot mode, call the appropriate Team code|
[Double click an icon to open a Team V1 and modify code.

e 1/0 refnums|
tialize robot

Fartup o Smartdashboard /Network Tables Server]
= [funs in parallel with user code.

g [Cor

funs in parllel with user code,

obot Prject 21vproj o [——
[Almage Sz} 7_\ [Acquire camera images and 015G BrojEcE2bpeyime (K] »

lprocess them in parallel with)
Jother loops.

[Carry out periodic tasks such|
s control loops.

_images/32.png
@J String

String 2

2 Global 1 Front Panel*

File

Edit View Project Operate

Search BN

String

String 2

_images/33.png
[Tsearn

Fie €6t View Project Operte Toos Vindow Hep

[512] @11 159t Appcation Font 1~] B [2+ |69~

Button Pressed?

[Bitton Presshpro

_images/prot-1.png
Windows protected your PC

Windows Defender SmartScreen prevented an unrecognized app from

nlng this app might put your PC at risk.

_images/42.png
3 Unted3 ot P o Buton rshpreyTrget™
Fie Gat Vew P Opeme Tocs Vinao Fiy

(58]] 5t om0

_images/prot-3.png
® User Account Control

Program name:

Publisher: Unknown
File origin: Hard drive on this computer
Show details

Change when these notifications appear

_images/5.png
Vision

File Edit View Project Operate Tools Window Help

BEEn - [spptcson o |+ [T] 65+) TN)

[2015 Robot Project Zivproj Target ¢ i ’

_images/prot-2.png
Windows protected your PC =

Windows Defender SmartScreen prevented an unrecognized app from
starting. Running this app might put your PC at risk.

App: CTRE Phoenix Framework v5.11.10.exe
Publisher: Unknown publisher

_images/programming-radios-for-fms-offseason-5.png
) User Account Control

Program name: FRC Bridge Configuration Uilty.exe
Publisher: Unknown
File origin: Hard drive on this computer

r— ()

Change when these notifications appear

_images/programming-radios-for-fms-offseason-4.png
)i FRC FMS Robot Simulator

(23] FRC Radio Configuration Uty

_images/programming-radios-for-fms-offseason-7.png
4> FRC Radio Configuration Utilty e =3 =

File Tools

Team Number: 1 2 Configure

WPA Key: #% Load Firmware
Radio: (oMsP_AN)
1 L]

Please enter a SSID.
'S8IDs must be 1-31 characters long, and only contain alphanumeric characters.

[worseasor]

(oc] [cmen

_images/programming-radios-for-fms-offseason-6.png
44> FRC Radio Configuration Uity 2 =&

2 Configure
#% Load Firmware

<

Radio: [oM5P_AN
Mode: |Bridge
Country: (UsA

<

usa
-

_images/programming-radios-for-fms-offseason-9.png
£ FRC Racko Contiguration U0y S N Sl

File_Tools

Team Number:) Configure
#% Load Firmware |

To program your wireless bridge: If asked to reset your wireless bridge:
1) Connect power and Ethernet to the wireless bridge. 1) Open the FRC Radio Configuration Utility.

2) Make sure to use the "802.3af" Ethernet port as shown above. 2) Select OM5P-AN as the radio.

3) Wait for the Power light to turn and stay solid. 3) Unplug power from the radio

4) Enter your team number above 4) Press the "Load Firmware” buiton.

5) Press "Configure”, the process should take 15-60 seconds 5) Follow the on-screen prompts.

_images/programming-radios-for-fms-offseason-8.png
> FRC Radio Configuration Uity IS EEES

File Tools

Team Number: 1 2 Configure

WPA Key: #% Load Firmware
Radio: (oMsPAN
T v

Please enteraWPAKey
'WPA keys must be 8-15 characters long, and only contain alphanumeric characters
yPaKel

If asked to reset your wireless

To program you

ige:

_images/project-explorer-2.jpg
"Teleop Enabled”

[Execute Teleop VI to react
to a new Driver Station packet

[Based on the robot mode, call the appropriate Team code
o Double click an icon to open a Team VI and modify code

Create /O refnums|
& initialize robot

F—l [Startup a Smartdashboard /Network Tables Server.
[S#verl |Runs in parallel with user code.

ey |Start Robot Communication.
corm] |Runs in parallel with user code.

s’:'{"l [Execute the code of the subsystems|
L\)

_images/project-explorer-1.png
{3 2016 Robot Project.lvproj - Project Explorer =E=@]=]

File Edit View Project Operate Tools Window Help

Items ,E

= [Project: 2016 Robot Project.lvproj
B My Computer

& B, Target (roboRIO-1-FRC.local)
.-ﬁ data

B Drive for Time.vi

) DriveImmediate.vi

(%) Read Drive Operation.vi

B Reserve Drive.vi

[} Stop Driving.vi

Q Template for Drive Immediate with Deadband.vit
Q Template for Drive Immediate.vit

L. [m) Template for Drive with Duration.vit

-[@ Implementation

[@ Infrastructure

[Drive Controller.vi

[3 Drive Operations.ctl

| Drive Published Globals.vi

[£3 Drive Setpoints.ctl

- B Score Macro.vi

Debugging globals.vi
(sl Elapsed Times.vi

B Vision Processing.vi
[} Robot Main.vi
%) Teleopvi

B Autonomous.vi
[Testwi

[} SubSystems.vi

Build Specifications
peci

_images/51.png
(7] Allow debugging
Reentrancy.
© Non-reentrant execution

© Shared clone reentrant execution

Reentrancy settings affect memory usage, call
‘overhead,jtter, and state maintained within the
VI Display Contest help for guidance vith
selecting the bestsetting for your use case.

Flinine subMlntocaling Vs

reallocated clone reentrant execution

Priciy

[romelpioity [5]

Prefened secution System
smesscaler [x]

able automatic rror handing
]Run when opencd

ISuspend when called

] Clesrinicators when called
Auto handie menus st aunch

e =

_images/7.png
salues to the dashboard

[True 7]
Button was Pressed. Do Something!
[This code will only run once per button press!

[
kS Ot o] 5> [@Enabie Vision]

_images/adapter-settings.png
Control Panel Home))
View your basic network

Manage wireles networks &
Change sdapter setnge NG KOCONSC
o hvancea shomg (This computer)
Eaino View your active networks.
usfistlocal

Domain network

_images/6.png
[L00 ms tasks go here]

RobotDriveDevRef Motors[]

(@ Giobal Variable Witten to in Teleop)]

_images/61.png
B Unite ot P an Bt Pres e T

Fic Gt Vi Pryet_Opete Tl Vindon T

(51| @[] [Apcsionfon | 5] — < Tﬂf‘mm.

Find Al stances

_images/add-encoder-logic.jpg
I Drive Controller.vi Block Diagram on 2016 Robot Project XXX Ivproj/Targe
Fie Edt View Project Operate Tools Window Help

[]@] @[] (3] 23] [wal=*] -+ [18pt Application Font |~ | o~ @&~ (6~]%a]

[Loop: carries out operation using setpoints. and checks notifier to determine what to do next. Use a timed loop if low timing itter s key.]

Step 5: Upate your VO
o R T e
bbbt - [Ceftand right Motors

RightMotorinverted [F} [RobotDrive Motors|

T "Drive for Distance” :EE
s

[Could use rate to estimate]
[how much longer?

gt Setpoint
Duration
Distance (feet)|

_images/add-vi-parameters.jpg
& Template for Drive with Duration 1.vi Block Diagram on 2016 Robot Project XXX.lvproj/Tar...

File Edit View Project Operate Tools Window Help L

B [180t Application Font |~ | 5=~ | e~ | [60~ |[*a4] Fomach @)

j Drive for Distance ~]

|update mode and setpoints|

Description

Do

Left Speed|
Right Speedh €L
Distance (inches) [t >
g
inches per foot! Command Info Out

Command Info In!

i

Synchronication[E

[2016 Robot Project XXXIvproj/Target ¢ i, o |

_images/add-case.jpg
[Coop: carries out operation using setpoints, and checks notifer to determine what to do next. Use a tmed loop i low timing jier i key]

ensars, perform calculations,

and status

[Update motors and update dashboard]

o) asingle ca
LefMotarinverted L=t and Right Motors Robotbrive Motors
RightMotorlnverted [T}
@ : :
et EEN) Drive or Time e ——
Tlon]
Help
Examples
Description and Tip...
Operation Breakpoint »
TeftSetpont
Right Setpont Structures Palette »
Durtion + Auto Grow
Exclude from Diagram Cleanup
Replace with Stacked Sequence

efault Command] Remove Case Structure

fo Reserve -]
OLeft Setp
Fight 5=

Add Case After
Add Case Before
Duplicate Case

Delete This Case

Subsystetn Narre i .
[Drive | Show Case >
Swap Diagram With Case »
Rearrange Cases..

Make This The Defaut Case

L -8 Remove and Rewire

o ’—
e -

[This ensures that reserve will
[be deployed to the robot

=
b=

Left Setpoint
o [Right Setpoint]
Duration

errorin

_images/add-distance.jpg
&2 Drive Setpoints.ctl Ty... L

File Edit View Project Operate Tools n,,,.

[£][Type Def. [~ || 18 gt

SubSystem Data

Operation

Reserve

Left Setpoint Right Setpoint 2
0 0 3
Duration Distance (feet)

0 0

2016 Robot ProjectDec9.lvproj/Target| Il *

_images/adding-safety-features-to-your-robot-code.png

_images/programming-radios-for-fms-offseason-3.png
(8 FRC Radio_Configurstion 10,8 15.rc 108/2015150PM__ Appliation

% FRCicon_RGB_Border.bmp. 2/0/015127PM _ Bitmap Image

_images/programming-radios-for-fms-offseason-2.png
Teaml proTI0 Jump 01D ~

[€) [=] = [8] [[3

Proptkoms Tracers | SourcaCode il Releases Doumerts | Wi | Discussons | Repors Proctadmin
WPILib | Fil Reloases | FRC Radio Configuration Uity List Reloases
o Release Package Details:
‘Summary Package Name: FRC Radio Configuration Utiity
Fackages: Descrptor: Tootoconfgure PR Rt Radics
Oriver Station ‘Show Download Link
o
FRCRadio Confiouraion Uiy JLALECIEES
Simuaion =
I 3 Fiter |~ | 15 Rows v
RokaseD: © Watwiy CreatedOn 1S * Fes > Related Tracker _ Relotod Planing
Name Downloads Artifacts Folders.

Any - Any

© Noresuts found.

_images/math/f951496367dfa9fdd9453ecfdca4afdff57d1836.png
12

_images/windows-firewall-configuration-6.png
-[4]

el » Al Control Panelltems » Windows Firewall » Allowed Programs

Allow programs to communicate through Windows Firewall
To add, change, or remove allowed programs and ports, click Change settings.

What arethe risksof allowing a rogram to communicate? [8 Change setings

Allowed programs and features:

Name Domain Home/Work (Private) Public

FRC PC Dashboard
FTCounterMonitor.exe
FTCounterMonitor.exe
FTCounterMonitor.exe
FTSPVStudio.exe
FTSPVStudio.exe
FTSPVStudio.exe
FTSysDisgSvcHostexe
FTSysDisgSvcHostexe
FTSysDisgSvcHostexe
Google Chrome

_static/Logo-Under-Vetor-Certo.png

_static/file.png

_static/plus.png

_static/minus.png

_images/additional-software.png
Installing FRC Game Tools

Select Agree Review Perform

Additional items you may wish to install:

NI Certificates Installer
NI Certificates configures Microsoft Windows to always trust software from NI When NI Certificates

are installed, no Windows security popups appear for installers that have a valid National Instruments
digital signature.

Back Select All Deselect All Next

_images/allow-changes.png
) User Account Control

Program name: FRC Bridge Configuration Uilty.exe
Publisher: Unknown
File origin: Hard drive on this computer

r— ()

Change when these notifications appear

_images/bad-web-dash.png
NATIONAL
Restart Login Help "‘(msnwmzms

_images/begin.png

_images/axis-camera-setup.png
-

Directions: Select how the camera is connected on your robot. If you use the Robot Radio, enter your ~
Team ID and click Apply. I you use the 8-slot CompactRIO Ethernet port 2, click Apply without entering |
aTeam D,

Troubleshooting the tool: This tool expects the Avis camera to initially be set to ts default IP address | =
0F192.168.090. In order to communicate with the camera, set the P address of your PC to 192163.0.11,
and plug the camera into your PC. The Camera found LED must be on for this tool to work, If the LED.

s off, reset the camera and check the I address of your PC. bt

Troubleshooting the camera: I you need to reset the camera to ts defaultIP address, hold downthe ~

Camers Connection on Robot @ Camers found 2152168090 7
© Robot Radio Team D

8-slot CompactRIO Ethernet port 2

Apply

_images/axisconventions.jpg

_images/block-diogram.png
R
PEEE

g e

[e g 1

L8 fmEE

_images/boot-to-usb.jpg
14 -fove

_images/block-diogram-2.png
o G Took Vinaew

) [10][§] 85 ool o [15m pcanonro +|F e 65+ oo

Vsl e)

_images/roborio-mxp.png
PVistivmENTs

_images/block-diogram-3.png
= EY i)

Toadd more /O, use sn Gpen V1 folomed by Refoum
(S Use s R Regitry Get Vi thecther

_images/measuring-bandwidth-usage-3.png
® Performance
5@ Monitoring Tools

B Performance Montor
» 3 Data Collector Sts
» O Reports

EREMFCYIETTLY

100§

%0

A Counters e ——————————————

VW Fl

Avalable counters.
Select counters from computer:

<Local computer>

WSO TC BTagE TUT
NBT Connection
Netlogon

Network Interface
Objects

Offline Files

Pacer Flow

Pacer Pipe

Teredo Tunneling Pseudo-Interface:

Search

‘Added counters.

Counter

Parent Inst... Computer

Remove <<

-]

_images/roborio-rs232.png
w

_images/measuring-bandwidth-usage-2.png
(® File Action View Window Help

[® performance

" 0@ Monitoring Tools

B8 Performance Mon
. 3 Data Collector Sets
» O Reports

Overview of Perfor

You can
configur
and view

To begir
The new
memory

applicati
thread w

OpenRe

_images/roborio-page-home.png
172.22.11.2: System Configuration

N |

roboRi0-i-FRC

0000 (therner)
7372513 (Everet)

NS Name.
Vender aiona Inctruments

Wocel roboRio

Seris Number os0sssas

Fmware Verson 60011

Opersting System N Linux ResiTime ARMVT-A £9.47:437:0-6.0.01

stonue Running

SystemStatTime Mon Mo 19 2018 14:16:34 GHT-0500 (Easter Standard Time)
image Tie roboRio image

Image Verson FRC_roboR10_201s w1z

Comments

Locale Engien

Visa Resourca Name systam

e

‘Startup Settings.

7 Forcs e vode.
] Erobie Console Ot

Disable R Startup Ao

) cisable FPoa starup App.
9] Enable Secure Shell Server (sshd)
oI Projct Access

_images/measuring-bandwidth-usage-5.png
Performance Monitor Properties

Genera | Source | Dat | Graph | Appearance

_images/roborio-usb.png
w

_images/measuring-bandwidth-usage-4.png

_images/roborio-spi.png
w

_images/lv-paletteMenu.png
& >
] i) rac
FIRST Vision PD WPl Robotics

Library

1 WP Robotics Library

Third Party
o
4 -8B B+)
RobotDrive Joystick Sensors Actuators o Third Party
@ o =]
DriverStation Dashboard Camera

Power

1 Third Pary

CTRE

_images/roborio-filesystem.png
File Edit View Transter Server Bookmarks Help New version available!

EN] RVRBKZEATFN
Host: sftp:/JfoboRIO40.Jor Username: Ivuser Passuord: Quickcomnect)]
Conmand: O
Listing directory fhome lvuser
Calaatng mezone offet of servr...
mtie FRCUserProgramjar”
116605617
Timezone offsets:Server: 0 seconds. Local: 18000 seconds. Diference: 18000 seconds.
Directoryistng successful
v [Remote ste: [home vuser
-/ Computer < [=-@/
: 12 home
) user
s B (HP_TOOLS) H
538 M: (Wirst-fs02\koconnorS)
8 N: (st £03\ntranet)
G 0: (\\fista01\Procedures) -
Filename Filesize Filetype Last modified Filename. Filesize Filetype Lastmodified Permissions Owner/Gro.
& LocalDisk i
S D Drive (8) FRC Userbrogram iog Fictorder ™ TUR/00 230
s (HP_TOOLS) Local Disk. Ul natinst. File folder 11/8/2014 247:...
M (\irst-f02\... Network Drive [#) README File Paths.xt Filefolder 11/8/2014 219:...
SN (\first-fs03\L.. Network Drive || bash_history 26 BASH_HIS.. 11/21/20149:2...
S20: (Wirst-fO1\P... Network Drive] bashre 410 BASHRCFile 6/10/2014 205...
GOP: (Wrst-O1\P... Network Drive] profile 152 PROFILEFile 6/10/2014 205..
SAQ (Wirst-fs03\T... Network Drive || FRCUserprogram 5018529 File 172172014 35...
SR (Wfirst-F01\D... Network Drive] FRCUserProgramjar 796605 Exccutable .. 11/21/201443...
] robotCommand & Fie 172172004 35...
[robotDebugCommand 185 File 1/21/200845...

_images/lv-openloopramp-1.png

_images/roborio-dio-ports.png
w

_images/lv-voltagecomp-1.png

_images/roborio-i2c.png
w

_images/lv-snip-1.png
RELY

_images/roborio-ftp.png
O0-[?

Seorch rEGREALEG]]

v |4

le folder

"
H

o

Organize v
¢ Favorites

El Recen
[

_images/measuring-bandwidth-usage-1.png
Programs (1)

[® permon.msc

[perimonms] =] [shutdonn []

_images/roborio-ip-address.png
roboRIO-40 : System Configuration

sove | [t |

System Settings

40.2 (Ethemet)

. | Canmerface
Neme: cand

ey
Name: PCM (1st device found)

DNS Name

Vendor National Instruments.

Name: PDP (2nd device found)

.
e vl et
L]

T e :l
—

[Force Safe Mode

[¥] Enable Console Out

[isable RT Startup App

[isable FPGA Startup App

] Enable Secure Shel Server (sshd)

] LabVIEW Project Access

System Resources.

Total Physical Memory 232 MB

Free Physical Memory 103 MB

Total Virtual Memory 232 MB

_images/mc-lv-1.png
[Put this in Beginai

[Put this in Teleopi]

s [Fatons] Percentoutpur -
P T8 = e
e]

eyt

eyt

_images/roborio-imaging-tool.png
00:80:2F:30: 458
2112

FRC_1oboRI0_2015_v16

3000

_images/measuring-bandwidth-usage-10.png
Fistpacket 213012914205
Lstpoder 30191223

e wm3s
Gpture

ox 8 indows S PackL, buid 601

Coptuesppcstion: Dumpeap 133 (SN Rev 4525 rom vk 1.8)
Coptue e comments

ntoce Orcpped Packets Cpture e ik ypePcket s imi.

\Dec N [GASCSAAL 864544 BE0ETCESRRDTRZL) urknowm nane

_images/bring-10.png
& Phoenix Tunes Vrsion (07:30) - o x
OptonsTook_Windows ey Selected AN Devices $CM (Dece 00 B

Serve Vs

Updating http://172.22.11. 0730 (Dec 2 218.00:11:40)

ok

_images/bring-11.png
& Phoenix Tuner Version (0.7.3.0) - o X

Options Tools Windows Help

['Ught Device LED" to dear sticky faults.

lBuid:Dec 27 2018 21:29:14
fress Refresh” to dose.

Server Version:

Updating http://172.22.11. @I% conoa e

:1250 CTRE Devices

_images/bring-1.png
& Phoenix Tuner Version (0.7.3.0)

Options Tools Windows Help Selected CAN Device: -

General Device Configuration
Change the ;0 Change D

Change the name: ‘Change Name

Press to anmate deice LEDS and confirm ID s conret. | Bink

Field-Upgrade Device Fimware
Select CRF and Press Update Frmware” to fash new frmnase.

]

0] Update al devices with matchg type.

_images/bring-18.png
& Robot Enable? - o

So how do | use this?
IIf you want to deploy an FRC application...
1) Use the Driver Station to enable the robot like normal.
2) Create at least one CTRE Phoenix software object to load Phoenix Library (any type and any device ID).
3) Now you only need to press the control button to use the track bar.
The non-FRC enable will have no effect.
Track bar will override any control mode requested in the FRC application.

If you do net want to use an FRC application....

1) Close Driver Station software completely.
2) Un-deploy your FRC application. Instructions on this depends on language.

3) Export your device configurations using Tuner (if you want to keep them)
4) Factory default motor controller using Tuner.

5) Press nonFRC enable button and Motor Controller Control Enable.

6) Use track bar to drive.

ISPACEBAR or ENTER can be used to quickly disable motor controller.

How does this work?
[CTRE devices that are not FRC locked can be enabled using this program. However, the nonFRC enable is ignored if roboRIO
is detected on CAN bus (FRC use-case).

If device deteets the FRC use-case, the device will become FRC locked (Self-test will report this) and Driver Station must be
lused to successfully enable device.

This requires deploying a robot application that creates at least one Phoenix object (any device).

|At which point the control/test features can be used.

OK

_images/bring-2.png
% Phoenix Tuner Version (0.7.3.0)
Options Tools Windows Help Selected CAN Device: -

Devices (Count:6) Software Status Hardware ID Fi.. Manufactur... B... H.. Vendor

#Omars CANfer " Running Appication. 7T TCANifer 00 [0.42 Sept3, 2017 1.0 1.0 Cross The Road Blectronics |
&PV (Device ID 0) Running Application. PCM 00 1.62 June 17,2015 3.0 16 CrossThe Road Electronics
“QPDP (Device ID 0) Running Application. POP 00 1.30 Aug14,2014 3.0 11 CrossThe Road Electronics
WBrigeon (Device ID0) Running Application. Pigeon 00 0.41 Nov9,2016 10 1.1 CrossTheRoad Electronics
P Talon SRX (Device ID 0) There are 14 devices with this Device ID. Running Application. TalonSRX 00 3.9 Aug 14,2015 3.2 1.7 Cross The Road Electronics
\mn Left Running Application. Victor SP’X 00 3.9 Nov19,2017 0.2 1.0 VEXRobotics

_images/bring-16.png
& Phoenix Tuner Version (0.7.3.0)

Tools Windows Help

[

Collapse All

Max output the motor controller wl akow, regardiess of what dosed-o0p o user requests. 1.0 represents -100%

Server Version:

Updating http://172.22.11.2:1250 CTRE Devices 0740 (Dec 27 201821:29:15)

_images/bring-17.png
& Phoenix Tuner Version (0.7.3.0)

Options Tools Windows Help

Motor Controller Control / Testing

NOTE: Use ENTER or SPACEBAR to quickly zero the buttons and trackbar.
Control Disabled

Updating http://172.22.11.2:1250 CTRE Devices...

Server Version:
0.7.4.0 (Dec 27 2018,21:29:15)

_images/bring-22.png
Phoenix Tuner Version (0.73.0)
Options Tools Windows _ Help ‘Selected CAN Device: Victor 0- Left -
x
non-FRC Robot Enable.
Robot Enabled
Motor Controller Control / Testing
Percent O JIRETERE
] 010 010 020
0 0so
005 005 005
NOTE: Use ENTER or SPACEBAR to quickly zero the buttons and trackbar. 000 00 000 000
Control Enabled 005 005 005
050
400
150020 020020
Ao Zoom

Updating http://172.22.11.2:1250 CTRE Devices...

Ok

Server Vrsion:
0740 (Dec 27 2018,21:29:15)

_images/bring-20.png
Self-Test

Pos:0u | Vel: 0u/100ms
Slot Select: 0
Err:Ou | iacc:Ou-ms | derr: 0ufms

PID1 (aux)

Feedback: Quad/MagEnc(rel)

Pos: Ou | Vel: Ou/100ms

Slot Select: 0

Err:0u | iacc: Ou-ms | derr: Oufms

Limit Switches
Forward:Open
Reverse:Open

Bus: 11.85V

"Light Device LED" dears sticky faults.

Build:Dec 27 2018 21:29:14
Press Refresh” to dose.

Self-Test

_images/bring-21.png
& Phoenix Tuner Version (0.7.3.0)

Options Tools Windows ~ Help. Selected CAN Device: Victor 0 - Left -

non-FRC Robot Enable
Robot Enabled

Motor Controller Control / Testing

NOTE: Use ENTER or SPACEBAR to quickly zero the buttons and trackbar.
Control Enabled

Updating http://172.22.11.2:1250 CTRE Devices

_images/lv-follow-1.png

_images/roboRIO-project.png
File Operate Tools Help

L2} LabVIEW 75

Projects >
Tutorials New aQ
N % Blank v
o) FRC r0boRIO Projct
Support & FRC Dashboard Project
£ More.
Open

8. .entein Rebor Warking Version vprcj

18 mindsensors Bamplesproj

Beginyi
CANLight Fadexi
Periodic Tasks.vi
Teleopi
Robot Mainyi
CANLight Demoui

| Robot Global Dataui

3 Browse.

e

_images/rmprep.png
Edt Dive Bootloaders Settings Help

Befresh °5)
1 Partton Sze (B) 2 Voume Label

MAX [Generic. LB €3 = Help (F1).

I No user prompts

3 Bootader Optons image Toos

Testusing QWU
& WnPEV2MIPEVINia/Win boctable BOOTMGR (CC8) - Emuistor (F11)

€ MS:005 baolable [0.5¥5] (CC3end CC4DOSUFD)
© XP/BSPE bookable NTLDF]
 FREEDOS bootable KERNEL 5Y5]

© SYSLINUX bootale [LDLINUIKSYS + SYSLINUX CFG]

4 Flesystem and Overrides.
I™ Book as FOD (4: o MBR)
I Book 35 2P (& with MBR)
€ FAT2 T BootasHDD(C: 2PTNS)

I Force se of LBA cals
CNTFS [Use har2sec possble

© FATIE

¥ S Copy OS fles afer Format [BartPE > Drive

[C\DserstTames\DeskiophTest

Folows steps 110 i, format -
e aes lows steps 1106 to partion, format and make bootable a drive

_images/lv-neutralmode-1.png

_images/roborio-connect.png
FieZila

File Edit View Transfer Server Bookmarks Help

New version available!

PR e vR&e @0

[Fere ot J it e

Password:

_images/lv-invert-1.png
OB | s

BHo o

_images/roborio-analog-inputs.png
w

_images/radio-launch.png
)i FRC FMS Robot Simulator

(23] FRC Radio Configuration Uty

_images/radio-installer.png
(8 FRC Radio_Configurstion 10,8 15.rc 108/2015150PM__ Appliation

% FRCicon_RGB_Border.bmp. 2/0/015127PM _ Bitmap Image

_images/radioreboot.png
211489 PM
144,030 PM

45,531 PM

32311620 PM

311.6¢

M

02/06/13

‘Watchdog Expiration: System 2, User 0

‘Warning <Code> 44004 occurred at Driver Station

<time>2/6/2013 3:22:43 PM<unique#>6

FRC: The Driver Station has lost communication with the robot.

Warning <Code> 44002 occurred at Ping Results: link-GOOD, DS radio(4
ime>2/6/2013 3:22:45 PM<uniques>]

FRC: Driver Station ping status has changed.

'WARNING <Code> 44007 occurred at FRC_NetworkC

FRC: Time since robot boot

Wikt Exreatins St Uver D

_images/radioLight.png
[Power
Blue on or Powering Up
Blue Blinking __Powering Up

Eth Link

Blue Link Up

Blue Blinking __ Traffic Present

Bridge Mode,
Unlinked or non-FRC|

Power

firmware
AP, Unlinked
AP, Linked L
Bridge Mode, Linked = =~
WiFi light only works after radio
has been power cycled. —

_images/review-summary.png
Select Agree Review Finish

Review the following summary before contin

¥ Install

FRC Game Tools
LabVIEW Runtime (32-bit)

NI License Manager

NI Certificates Installer

NI PXI Platform Services Runtime
NI System Configuration Runtime
NI Vision Common Resources

NI Vision Runtime

Back Next

_images/recovering-a-roborio-using-safe-mode-1.png
neser s ’l‘

_images/rioLight.png

_images/windows-firewall-configuration-5.png
» Control Panel » All Control
b= =

Control Panel Home

Help p
=
@ TumWindows Firewallonor What ar

S |

® Advanced settings Netwer

_images/windows-firewall-configuration-3.png
G5 5[» ContoiPanel » Al CotrolPanl Hems » Windows Frevall » CostomizeSetngs ~ 49] SearchCor

Customize settings for each type of network

You can modify the firewall settings for each type of network location that you use.
What are network locations?

Domain network location setings
@ © Tomon Windows Frewal
[]Block all incoming connections, including those in the list of allowed programs

Notify me when Windows Firewal blocks a new program
© Tum off Windows Firewall (not recommended)
Home or work (private) network location settings

@ © Tom on Windows Frewal
[]Block all incoming connections, including those in the list of allowed programs

Notify me when Windows Firewall blocks a new program
Turn off Windows Firewall (not recommended)
Public network location settings

@ © Tom on Windows Frewal
[]Block all incoming connections, including those in the list of allowed programs

Notify me when Windows Firewall blocks a new program

)@ Turn off Windows Firewall(not recommendie)

¥ o (o]

_images/victor-spx-motor-controller.png

_images/victor-sp-motor-controller.png

_images/visual-studio-code.png
o0 Welcome
0] 4) Welcome % w m

£ Visual Studio Code

Editing evolved

¥
® Start Customize
ol

Now e
Open folder... Toals and languages
Add workspace flder. Insall support for Javaseript,TypeScrpt, Python, PHP, Azure, Do
Settings and keybindings
Insalthe setingsand keyboard shortcuts of Vi, Sublime, Atom
Recent ° .
TestCpp. ~/Deskion
allwg ~lgit Color theme:
More... (~R) Make the edtor and your code ook the way you love
Learn
Help
Printable keyboard cheatsheet A L
e Rapicly access and search commands rom the Command Paett.
Tips and Tricks
Product documentation
GitHub repository. Intetface overview
Siack Ovarfon Geta visual overlay highighting the major components of the U

Interactive playground
® Show welcome page on startup Try essential editor features outin a short walkthrough

* i
@oA0 o oA

_images/victorSPLight.png
v

Brake/Coast/CAL
Button/LLED,

_images/voltage-regulator-module.png

_images/voltage-divider.png
R

Ry

Vout

_images/windows-firewall-configuration-1.png
1S
Adjust your computer's settings

¥ Action Center
B AXIS Media Control (32-bit)
Credential Manager

& Device Manager

Flash Player G2-bit)

& HomeGroup

& Keyboard

¥ Network and Sharing Center

W Performance Information and Tools
B Programs and Features

%5 RemoteApp and Desktop Connections
@ Sync Center

88 User Accounts

) Windows Mobilty Center

Administative Tools
 Backup and Restore

9 Date and Time.

& Devices and Printers

[Folder Options

& Indesing Options

Location and Other Sensors
22 Notiication Area lcons

B personaization

Q@ QuickTime (32-bit)

4 Sound

158 System

3 Windows Cardspace

& Windows Update

€ Akamai NetSession Interface Control...
B Blackhawk Control Panel
@ Default Programs

8 Disploy

1A Fonts

Internet Options

B Mail G2-bit)

B8 \IDIA Control Panel
(5 Phone and Modem

& Recovery

& Spesch Recognition

L Taskbar and Start Menu
1 Windows Defender

5 » Control Panel » AllControl Panel kerns » ~ [)| Search Control Panel

53 AutoPlay

H Color Management
2§ Desitop Gadgets

